3,086 research outputs found
Synchronization in Complex Systems Following the Decision Based Queuing Process: The Rhythmic Applause as a Test Case
Living communities can be considered as complex systems, thus a fertile
ground for studies related to their statistics and dynamics. In this study we
revisit the case of the rhythmic applause by utilizing the model proposed by
V\'azquez et al. [A. V\'azquez et al., Phys. Rev. E 73, 036127 (2006)]
augmented with two contradicted {\it driving forces}, namely: {\it
Individuality} and {\it Companionship}. To that extend, after performing
computer simulations with a large number of oscillators we propose an
explanation on the following open questions (a) why synchronization occurs
suddenly, and b) why synchronization is observed when the clapping period
() is ( is the mean self period
of the spectators) and is lost after a time. Moreover, based on the model, a
weak preferential attachment principle is proposed which can produce complex
networks obeying power law in the distribution of number edges per node with
exponent greater than 3.Comment: 16 pages, 5 figure
A New Family of Multistep Methods with Improved Phase Lag Characteristics for the Integration of Orbital Problems
In this work we introduce a new family of ten-step linear multistep methods
for the integration of orbital problems. The new methods are constructed by
adopting a new methodology which improves the phase lag characteristics by
vanishing both the phase lag function and its first derivatives at a specific
frequency. The efficiency of the new family of methods is proved via error
analysis and numerical applications.Comment: 21 pages, 3 figures, 1 tabl
- …