720 research outputs found
On the Convergence of the Born Series in Optical Tomography with Diffuse Light
We provide a simple sufficient condition for convergence of Born series in
the forward problem of optical diffusion tomography. The condition does not
depend on the shape or spatial extent of the inhomogeneity but only on its
amplitude.Comment: 23 pages, 7 figures, submitted to Inverse Problem
Coherently tunable third-order nonlinearity in a nanojunction
A possibility of tuning the phase of the third-order Kerr-type nonlinear
susceptibility in a system consisting of two interacting metal nanospheres and
a nonlinearly polarizable molecule is investigated theoretically and
numerically. It is shown that by varying the relative inter-sphere separation,
it is possible to tune the phase of the effective nonlinear susceptibility
\chi^{(3)}(\omega;\omega,\omega,-\omega)2\pi$.Comment: 10 pages 5 figure
Local anisotropy and giant enhancement of local electromagnetic fields in fractal aggregates of metal nanoparticles
We have shown within the quasistatic approximation that the giant
fluctuations of local electromagnetic field in random fractal aggregates of
silver nanospheres are strongly correlated with a local anisotropy factor S
which is defined in this paper. The latter is a purely geometrical parameter
which characterizes the deviation of local environment of a given nanosphere in
an aggregate from spherical symmetry. Therefore, it is possible to predict the
sites with anomalously large local fields in an aggregate without explicitly
solving the electromagnetic problem. We have also demonstrated that the average
(over nanospheres) value of S does not depend noticeably on the fractal
dimension D, except when D approaches the trivial limit D=3. In this case, as
one can expect, the average local environment becomes spherically symmetrical
and S approaches zero. This corresponds to the well-known fact that in trivial
aggregates fluctuations of local electromagnetic fields are much weaker than in
fractal aggregates. Thus, we find that, within the quasistatics, the
large-scale geometry does not have a significant impact on local
electromagnetic responses in nanoaggregates in a wide range of fractal
dimensions. However, this prediction is expected to be not correct in
aggregates which are sufficiently large for the intermediate- and
radiation-zone interaction of individual nanospheres to become important.Comment: 9 pages 9 figures. No revisions from previous version; only figure
layout is change
Dirac type operators for spin manifolds associated to congruence subgroups of generalized modular groups
Fundamental solutions of Dirac type operators are introduced for a class of conformally. at spin manifolds. This class consists of manifolds obtained by factoring out the upper half-space of R-n by congruence subgroups of generalized modular groups. Basic properties of these fundamental solutions are presented together with associated Eisenstein and Poincare type series
Convergence and Stability of the Inverse Scattering Series for Diffuse Waves
We analyze the inverse scattering series for diffuse waves in random media.
In previous work the inverse series was used to develop fast, direct image
reconstruction algorithms in optical tomography. Here we characterize the
convergence, stability and approximation error of the serie
Recommended from our members
Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale
Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium
Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities
We have studied the problem of light scattering by an ensemble of dipoles with both electric and magnetic polarizabilities. Using the coupled electric and magnetic dipole method as the formal base, we have generalized the eigenvector decomposition of the local dipole moments previously derived for purely electric particles to the case of both electric and magnetic dipoles. We have analyzed the properties of eigenvalues and eigenvectors in the most elementary case of two particles. In the purely electric case, the eigenvalues correspond to the resonance modes of the system due to the electromagnetic coupling of its components. For a two-dipole system with both electric and magnetic responses, purely electric, purely magnetic, and mixed states can be distinguished. The resonance spectrum is analyzed as a function of the magnetic permeability, and it is shown that the latter can be fitted quite accurately by the eigenmode decomposition
'Justâ punishment? Offendersâ views on the meaning and severity of punishment
In England and Wales, âpunishmentâ is a central element of criminal justice. What punishment entails exactly, however, and how it relates to the other aims of sentencing (crime reduction, rehabilitation, public protection and reparation), remains contested. This article outlines different conceptualizations of punishment and explores to what extent offenders subscribe to these perspectives. The analysis is supported by findings from two empirical studies on the subjective experiences of imprisonment and probation, respectively. Semi-structured interviews were conducted with 15 male and 15 female prisoners and seven male and two female probationers. Two primary conceptualizations of punishment were identified: âpunishment as deprivation of libertyâ and âpunishment as hard treatmentâ. The comparative subjective severity of different sentences and the collateral (unintended) consequences of punishment are also discussed. It is shown that there are large individual differences in the interpretation and subjective experience of punishment, which has implications for the concept of retributive proportionality, as well as the function of punishment more generally
Carbohydrate-Free Peach (Prunus persica) and Plum (Prunus salicina) [corrected] Juice Affects Fecal Microbial Ecology in an Obese Animal Model.
BACKGROUND
Growing evidence shows the potential of nutritional interventions to treat obesity but most investigations have utilized non-digestible carbohydrates only. Peach and plum contain high amounts of polyphenols, compounds with demonstrated anti-obesity effects. The underlying process of successfully treating obesity using polyphenols may involve an alteration of the intestinal microbiota. However, this phenomenon is not well understood.
METHODOLOGY/PRINCIPAL FINDINGS
Obese Zucker rats were assigned to three groups (peach, plum, and control, nâ=â10 each), wild-type group was named lean (nâ=â10). Carbohydrates in the fruit juices were eliminated using enzymatic hydrolysis. Fecal samples were obtained after 11 weeks of fruit or control juice administration. Real-time PCR and 454-pyrosequencing were used to evaluate changes in fecal microbiota. Over 1,500 different Operational Taxonomic Units at 97% similarity were detected in all rats. Several bacterial groups (e.g. Lactobacillus and members of Ruminococcacea) were found to be more abundant in the peach but especially in the plum group (plum juice contained 3 times more total polyphenolics compared to peach juice). Principal coordinate analysis based on Unifrac-based unweighted distance matrices revealed a distinct separation between the microbiota of control and treatment groups. These changes in fecal microbiota occurred simultaneously with differences in fecal short-chain acids concentrations between the control and treatment groups as well as a significant decrease in body weight in the plum group.
CONCLUSIONS
This study suggests that consumption of carbohydrate-free peach and plum juice has the potential to modify fecal microbial ecology in an obese animal model. The separate contribution of polyphenols and non-polyphenols compounds (vitamins and minerals) to the observed changes is unknown
Recommended from our members
Advisor 2.0: A Second-Generation Advanced Vehicle Simulator for Systems Analysis
The National Renewable Energy Laboratory has recently publicly released its second-generation advanced vehicle simulator called ADVISOR 2.0. This software program was initially developed four years ago, and after several years of in-house usage and evolution, the tool is now available to the public through a new vehicle systems analysis World Wide Web page. ADVISOR has been applied to many different systems analysis problems, such as helping to develop the SAE J1711 test procedure for hybrid vehicles and helping to evaluate new technologies as part of the Partnership for a New Generation of Vehicles (PNGV) technology selection process. The model has been and will continue to be benchmarked and validated with other models and with real vehicle test data. After two months of being available on the Web, more than 100 users have downloaded ADVISOR. ADVISOR 2.0 has many new features, including an easy-to-use graphical user interface, a detailed exhaust aftertreatment thermal model, and complete browser-based documentation. Future work will include adding to the library of components available in ADVISOR, including optimization functionality, and linking with a more detailed fuel cell model
- âŠ