6,272 research outputs found

    Chromium uptake by Fenugreek

    Get PDF
    Fenugreek (Trigonella foenum- graecum) is both herb (leaves) and a spice (seed) belonging to the family Fabaceae. Fenugreek leaves and seeds are used in the cuisine of India. Fenugreek also has medicinal value. Fenugreek seeds are known to reduce serum glucose and improve glucose tolerance and hence are prescribed to diabetic patients. In the recent past supplemental Chromium is being prescribed to diabetic patients to activate (increased- insulin binding, insulin receptor number, insulin receptor phosphorylation) insulin. Plants can uptake substantial quantities of toxic metals from contaminated soils if these soils are well ameliorated. 

It is then probable that the medicinal efficacy of Fenugreek in the case of diabetes could be enhanced if it takes up chromium from the soil. Preliminary studies are being conducted to note the chromium uptake by Fenugreek from soils which are applied with potassium dichromate

    Studies on the Accumulation of Chromium in Fenugreek

    Get PDF
    Studying Cr uptake by Fenugreek, we note that the maximum concentration of Cr takes place in the shells of the pods followed by leaves, stems and seeds in that order. Interestingly, applied higher doses of Cr does not increase accumulation of Cr in the stems, rather Cr content in the stems levels off. However, the maximum dispersal/distribution of Cr taken up is in the leaves

    A growth walk model for estimating the canonical partition function of Interacting Self Avoiding Walk

    Full text link
    We have explained in detail why the canonical partition function of Interacting Self Avoiding Walk (ISAW), is exactly equivalent to the configurational average of the weights associated with growth walks, such as the Interacting Growth Walk (IGW), if the average is taken over the entire genealogical tree of the walk. In this context, we have shown that it is not always possible to factor the the density of states out of the canonical partition function if the local growth rule is temperature-dependent. We have presented Monte Carlo results for IGWs on a diamond lattice in order to demonstrate that the actual set of IGW configurations available for study is temperature-dependent even though the weighted averages lead to the expected thermodynamic behavior of Interacting Self Avoiding Walk (ISAW).Comment: Revised version consisting of 12 pages (RevTeX manuscript, plus three .eps figure files); A few sentences in the second paragraph on Page 4 are rewritten so as to make the definition of the genealogical tree, ZN{\cal Z}_N, clearer. Also, the second equality of Eq.(1) on Page 4, and its corresponding statement below have been remove

    Thomas-Fermi Method For Particles Obeying Generalized Exclusion Statistics

    Get PDF
    We use the Thomas-Fermi method to examine the thermodynamics of particles obeying Haldane exclusion statistics. Specifically, we study Calogero-Sutherland particles placed in a given external potential in one dimension. For the case of a simple harmonic potential (constant density of states), we obtain the exact one-particle spatial density and a {\it closed} form for the equation of state at finite temperature, which are both new results. We then solve the problem of particles in a x2/3 x^{2/3} ~ potential (linear density of states) and show that Bose-Einstein condensation does not occur for any statistics other than bosons.Comment: 10 pages (TeX), 2 figures available upon reques

    Non-critical Heterotic Superstrings in Various Dimensions

    Full text link
    We construct heterotic string theories on spacetimes of the form R^{d-1,1} times N=2 linear dilaton, where d=6,4,2,0. There are two lines of supersymmetric theories descending from the two supersymmetric ten-dimensional heterotic theories. These have gauge groups which are lower rank subgroups of E_{8} times E_{8} and SO(32). On turning on a (2,2) deformation which makes the two dimensional part a smooth SL_{2}(R)/U(1) supercoset, the gauge groups get broken further. In the deformed theories, there are non-trivial moduli which are charged under the surviving gauge group in the case of d=6. We construct the marginal operators on the worldsheet corresponding to these moduli.Comment: 27 pages, harvmac. v2 reference adde

    Novel correlations in two dimensions: Some exact solutions

    Full text link
    We construct a new many-body Hamiltonian with two- and three-body interactions in two space dimensions and obtain its exact many-body ground state for an arbitrary number of particles. This ground state has a novel pairwise correlation. A class of exact solutions for the excited states is also found. These excited states display an energy spectrum similar to the Calogero-Sutherland model in one dimension. The model reduces to an analog of the well-known trigonometric Sutherland model when projected on to a circular ring.Comment: 8 pages, REVTE

    In vitro measurement of nucleus pulposus swelling pressure: A new technique for studies of spinal adaptation to gravity

    Get PDF
    Swelling of the intervertebral disc nucleus pulposus is altered by posture and gravity. We have designed and tested a new osmometer for in vitro determination of nucleus pulposus swelling pressure. The functional principle of the osmometer involves compressing a sample of nucleus pulposus with nitrogen gas until saline pressure gradients across a 0.45 microns Millipore filter are eliminated. Swelling pressure of both pooled dog and pooled pig lumbar disc nucleus pulposus were measured on the new osmometer and compared to swelling pressures determined using the equilibrium dialysis technique. The osmometer measured swelling pressures comparable to those obtained by the dialysis technique. This osmometer provides a rapid, direct, and accurate measurement of swelling pressure of the nucleus pulposus

    Finite Temperature Magnetism in Fractional Quantum Hall Systems: Composite Fermion Hartree-Fock and Beyond

    Full text link
    Using the Hamiltonian formulation of Composite Fermions developed recently, the temperature dependence of the spin polarization is computed for the translationally invariant fractional quantum Hall states at ν=1/3\nu=1/3 and ν=2/5\nu=2/5 in two steps. In the first step, the effect of particle-hole excitations on the spin polarization is computed in a Composite Fermion Hartree-Fock approximation. The computed magnetization for ν=1/3\nu=1/3 lies above the experimental results for intermediate temperatures indicating the importance of long wavelength spin fluctuations which are not correctly treated in Hartree-Fock. In the second step, spin fluctuations beyond Hartree-Fock are included for ν=1/3\nu=1/3 by mapping the problem on to the coarse-grained continuum quantum ferromagnet. The parameters of the effective continuum quantum ferromagnet description are extracted from the preceding Hartree-Fock analysis. After the inclusion of spin fluctuations in a large-N approach, the results for the finite-temperature spin polarization are in quite good agreement with the experiments.Comment: 10 pages, 8 eps figures. Two references adde
    corecore