1,303 research outputs found

    Validation of a method for measuring sperm quality and quantity in reproductive toxicity tests with pair-breeding male fathead minnows (Pimephales promelas)

    Get PDF
    This article originally appeared in the ILAR e-Journal. It is reprinted with permission from the ILAR Journal, Institute for Laboratory Animal Research, National Research Council, Washington DC (www.nationalacademies.org/ilar).The fathead minnow (Pimephales promelas) is an OECD-proposed test species routinely used in reproductive toxicity trials with suspected endocrine-disrupting compounds (EDCs). The basic fecundity, endocrinology, and histopathology of reproductively active male and female fathead minnows has been well characterized, but there are few studies of the utility of male sperm concentration and motility as endpoints for use in reproductive trials. The purpose of this study was to (1) characterize the baseline sperm concentration and motility of pair-breeding male fathead minnows over their spawning cycle and (2) determine whether a repeated and nondestructive sperm sampling protocol would influence the baseline fecundity of the fish. Pair-breeding male fathead minnows that underwent sampling for milt three times a week for 4 weeks exhibited no significant changes in milt volume, sperm concentration, or motility parameters up to 6 days after each spawning event. The repeated sperm sampling procedure did, however, cause a significant lowering of spawning frequencies, although this decline did not correlate with effects on fecundity as there were no significant changes in the mean total numbers of eggs laid, fertilization, and hatching successes. This study confirmed the presence of a stable background of sperm concentration and motility parameters of pair-breeding male fathead minnows under reference conditions. The absence of any inherent “cycling” in the magnitude of these parameters over the spawning period suggests that sperm concentration and motility could be useful measures of male reproductive toxicity at the termination of tests in which pair-breeding males are at varying days post spawn.The research described was funded by the EU project Comparative Research on Endocrine Disrupters (COMPRENDO) Institute of Zoology Regents Park, London, contract No. EVK1-CT-2002-00129E

    Electron scattering due to dislocation wall strain field in GaN layers

    Full text link
    The effect of edge-type dislocation wall strain field on the Hall mobility in n-type epitaxial GaN was theoretically investigated through deformation potential within the relaxation time approach. It was found that this channel of scattering can play a considerable role in the low-temperature transport at the certain set of the model parameters. The low temperature experimental data were fitted by including this mechanism of scattering along with ionized impurities and charge dislocation ones

    On the quantum and classical scattering times due to charged dislocations in an impure electron gas

    Full text link
    We derive the ratio of transport and single particle relaxation times in three and two - dimensional electron gases due to scattering from charged dislocations in semiconductors. The results are compared to the respective relaxation times due to randomly placed charged impurities. We find that the ratio is larger than the case of ionized impurity scattering in both three and two-dimensional electron transport.Comment: 4 pages, 3 figure

    Deep Traps in AlGaN/GaN Heterostructures Studied by Deep Level Transient Spectroscopy: Effect of Carbon Concentration in GaN Buffer Layers

    Get PDF
    Electrical properties, including leakage currents, threshold voltages, and deep traps, of AlGaN/GaN heterostructure wafers with different concentrations of carbon in the GaN buffer layer, have been investigated by temperature dependent current-voltage and capacitance-voltage measurements and deep level transient spectroscopy (DLTS), using Schottky barrier diodes (SBDs). It is found that (i) SBDs fabricated on the wafers with GaN buffer layers containing a low concentration of carbon (low-[C] SBD) or a high concentration of carbon (high-[C] SBD) have similar low leakage currents even at 500 K; and (ii) the low-[C] SBD exhibits a larger (negative) threshold voltage than the high-[C] SBD. Detailed DLTS measurements on the two SBDs show that (i) different trap species are seen in the two SBDs: electron traps Ax (0.9 eV), A1 (0.99 eV), and A2 (1.2 eV), and a holelike trap H1 (1.24 eV) in the low-[C] SBD; and electron traps A1, A2, and A3 ( ∼ 1.3 eV), and a holelike trap H2 (\u3e1.3 eV) in the high-[C] SBD; (ii) for both SDBs, in the region close to GaN buffer layer, only electron traps can be detected, while in the AlGaN/GaN interface region, significant holelike traps appear; and iii) all of the deep traps show a strong dependence of the DLTS signal on filling pulse width, which indicates they are associated with extended defects, such as threading dislocations. However, the overall density of electron traps is lower in the low-[C] SBD than in the high-[C] SBD. The different traps observed in the two SBDs are thought to be mainly related to differences in microstructure (grain size and threading dislocation density) of GaN buffer layers grown at different pressures

    The growth of ZnO crystals from the melt

    Full text link
    The peculiar properties of zinc oxide (ZnO) make this material interesting for very different applications like light emitting diodes, lasers, and piezoelectric transducers. Most of these applications are based on epitaxial ZnO layers grown on suitable substrates, preferably bulk ZnO. Unfortunately the thermochemical properties of ZnO make the growth of single crystals difficult: the triple point 1975 deg C., 1.06 bar and the high oxygen fugacity at the melting point p_O2 = 0.35 bar lead to the prevailing opinion that ZnO crystals for technical applications can only be grown either by a hydrothermal method or from "cold crucibles" of solid ZnO. Both methods are known to have significant drawbacks. Our thermodynamic calculations and crystal growth experiments show, that in contrast to widely accepted assumptions, ZnO can be molten in metallic crucibles, if an atmosphere with "self adjusting" p_O2 is used. This new result is believed to offer new perspectives for ZnO crystal growth by established standard techniques like the Bridgman method.Comment: 6 pages, 6 figures, accepted for J. Crystal Growt

    Deep centers in a free-standing GaN layer

    Get PDF
    Schottky barrierdiodes, on both Ga and N faces of a ∼300-μm-thick free-standing GaN layer, grown by hydride vapor phase epitaxy(HVPE) on Al2O3 followed by laser separation, were studied by capacitance–voltage and deep level transient spectroscopy(DLTS) measurements. From a 1/C2 vs V analysis, the barrier heights of Ni/Au Schottky contacts were determined to be different for the two polar faces: 1.27 eV for the Ga face, and 0.75 eV for the N face. In addition to the four common DLTS traps observed previously in other epitaxial GaN including HVPE-grown GaN a new trap B′ with activation energyET=0.53 eV was found in the Ga-face sample. Also, trap E1 (ET=0.18 eV), believed to be related to the N vacancy, was found in the N-face sample, and trap C (ET=0.35 eV) was in the Ga-face sample. Trap C may have arisen from reactive-ion-etching damage
    corecore