96 research outputs found
Quantum key distribution with higher-order alphabets using spatially-encoded qudits
We propose and demonstrate a quantum key distribution scheme in higher-order
-dimensional alphabets using spatial degrees of freedom of photons. Our
implementation allows for the transmission of 4.56 bits per sifted photon,
while providing improved security: an intercept-resend attack on all photons
would induce an error rate of 0.47. Using our system, it should be possible to
send more than a byte of information per sifted photon.Comment: 4 pages, 5 figures. Replaced with published versio
State business: gender, sex and marriage in Tajikistan
This article examines the relation of the state to masculinity and sexuality by way of an exploration of the sexual problems of a young man and his wife in Tajikistan at the end of the Soviet era. It suggests that the regimeâs inattention to this kind of issue was bound up with the importance to the state of projecting appropriate versions of masculinity. It further posits the idea that the continued refusal of the independent Tajik state to offer appropriate treatments for sexual dysfunction is consistent with the image of modernity President Rahmon wishes to present to the world. The article shows that as masculinity discursively occupies the superior gender position, with men expected to dominate, the state is itself impotent to respond when they are, in fact, unable to do so in sexual practice. However, the myth of male dominance persists to the point that it may prevent women from seeing beyond their subordination and finding mutually beneficial solutions in their familial and sexual relationships
Esophageal atresia: data from a national cohort
PURPOSE: A prospective national register was established in 2008 to record all new cases of live-birth newborns with esophageal atresia (EA). This epidemiological survey was recommended as part of a national rare diseases plan.
METHODS: All 38 national centers treating EA participated by completing for each patient at first discharge a questionnaire validated by a national committee of experts. Data were centralized by the national reference center for esophageal anomalies. Quantitative and qualitative analyses were performed, with P-values of less than 0.05 considered statistically significant. Results of the 2008-2009 data collection are presented in this report.
RESULTS: Three hundred seven new living cases of EA were recorded between January 1, 2008, and December 31, 2009. The male/female sex ratio was 1.3, and the live-birth prevalence of EA was 1.8 per 10,000 births. Major characteristics were comparable to those reported in the literature. Survival was 95%, and no correlation with caseload was noted.
CONCLUSIONS: Epidemiologic surveys of congenital anomalies such as EA, which is a rare disease, provide valuable data for public health authorities and fulfill one important mission of reference centers. When compared with previous epidemiological data, this national population-based registry suggests that the incidence of EA remains stable
Le diagnostic antĂ©natal modifie-t-il la prise en charge nĂ©onatale et le devenir Ă 1 an des enfants suivis pour atrĂ©sie de lâĆsophage de type III ?
OBJECTIVE:
Evaluate neonatal management and outcome of neonates with either a prenatal or a post-natal diagnosis of EA type III.
STUDY DESIGN:
Population-based study using data from the French National Register for EA from 2008Â to 2010. We compared children with prenatal versus post-natal diagnosis in regards to prenatal, maternal and neonatal characteristics. We define a composite variable of morbidity (anastomotic esophageal leaks, recurrent fistula, stenosis) and mortality at 1Â year.
RESULTS:
Four hundred and eight live births with EA type III were recorded with a prenatal diagnosis rate of 18.1%. Transfer after birth was lower in prenatal subset (32.4% versus 81.5%, P<0.001). Delay between birth and first intervention was not significantly different. Defect size (2cm vs 1.4cm, P<0.001), gastrostomy (21.6% versus 8.7%, P<0.001) and length in neonatal unit care were higher in prenatal subset (47.9Â days versus 33.6Â days, P<0.001). The composite variables were higher in prenatal diagnosis subset (38.7% vs 26.1%, P=0.044).
CONCLUSION:
Despite the excellent survival rate of EA, cases with antenatal detection have a higher morbidity related to the EA type (longer gap). Even if it does not modify neonatal management and 1-year outcome, prenatal diagnosis allows antenatal parental counseling and avoids post-natal transfer
Recommended from our members
Mineralogy and Petrology of Comet Wild 2 Nucleus Samples
The bulk of the Wild 2 samples appear to be weakly-constructed mixtures of nanometerscale grains with occasional much larger (>1{micro}m) ferromagnesian silicates, Fe-Ni sulfides, Fe-Ni metal and accessory phases. The very wide range of olivine and low-Ca pyroxene compositions in Wild 2 require a wide range of formation conditions, probably reflecting different formation locations in the protoplanetary disk. The restricted compositional ranges of Fe-Ni sulfides, the wide range for silicates, and absence of hydrous phases indicate that Wild 2 experienced little or no aqueous alteration. Less abundant Wild 2 materials include a refractory particle, whose presence appears to require large-scale radial transport in the early protoplanetary disk. The nature of cometary solids is of fundamental importance to our understanding of the early solar nebula and protoplanetary history. Until now we have had to study comets from afar using spectroscopy, or settle for analyses of interplanetary dust particles (IDPs) of uncertain provenance. We report here mineralogical and petrographic analyses of particles derived directly from Comet Wild 2. All of the Wild 2 particles we have thus far examined have been modified in various ways by the capture process. All particles that may have been loose aggregates, ''traveling sand piles'', disaggregated into individual components with the larger, denser components penetrating more deeply into the aerogel. Individual grains experienced a wide range of heating effects that range from excellent preservation to melting (Fig. 1); such behavior was expected (1, 2 ,3). What is remarkable is the extreme variability of these modifications and the fact that severely modified and unmodified materials can be found within a micrometer of each other, requiring tremendous local temperature gradients. Fortunately, we have an internal gauge of impact collection heating. Fe-Ni sulfides are ubiquitous in the Wild 2 samples, are very sensitive indicators of heating, and accurate chemical analyses can reveal which have lost S, and which have not (and are therefore stoichiometric) (Fig. 2). Our surveys show that crystalline grains are found along the entire lengths of tracks, not just at track termini
A simple optical demonstration of quantum cryptography using transverse position and momentum variables
We discuss a simple experiment illustrating the fundamentals of quantum cryptography. Our experiment is performed using novel complementary observables: the transverse position and momentum of photons. In the classical optics regime the experiment serves as an interesting and simple classroom demonstration of the principles of quantum key distribution. (C) 2006 American Association of Physics Teachers
Theoretical studies of doped solid oxides for fuel cell applications
Zirconia (ZrO2) is of great importance as a support for systems where high ionic conductivity and mechanical stability are required. Doping/defects have a significant effect on the physical properties of this oxide by stabilizing the most symmetric phases, increasing the ionic conductivity and possible facilitating three phase interconnections in solid oxide fuel cells (SOFCs). Although Zirconia in its pure form exhibits different structures at high temperatures when it is alloyed with other oxides the high temperature cubic polymorph can be stabilized to temperatures low enough for fuel cell applications. Although there has been tremendous technological investment to obtain better materials, we are still far from an optimum solution. We start in this work with theoretical calculations as a support/participation in the search for more appropriate materials that will make this important technology viable in a wide range of applications in the near future. The calculations were performed in the framework of Density Functional (DFT) pseudopotential theory using the Projector Augmented Wave (PAW) with various approximations to the exchange-correlation functional. We investigate structural, electronic/band structure, density of states and charge densities for pure zirconia taking into consideration as well different dopants, their concentrations as well as vacancies for the various polymorphs with interest in fuel cell electrolyte applications.Fil: Solano Canchaya, JosĂ© Gabriel. Centro Brasileiro de Pesquisas FĂsicas; Brasil. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Gil Rebaza, Arles VĂctor. Universidad Nacional de San Luis. Laboratorio de Ciencias de Superficies y Medios Porosos; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Lemelle, D. S.. Centro Brasileiro de Pesquisas FĂsicas; BrasilFil: Taft, C. A.. Centro Brasileiro de Pesquisas FĂsicas; Brasi
Physical Sensing of Surface Properties by Microswimmers - Directing Bacterial Motion via Wall Slip
Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width
- âŠ