417 research outputs found

    The HPV cellular transactivator Brn-3a can be used to predict cervical adenocarcinoma and squamous carcinoma precancer lesions in the developed and developing worlds

    Get PDF
    The cellular transactivator Brn-3a has previously been shown to be expressed at elevated levels in the cervix of women with squamous cell carcinoma of the cervix (SCC) and to activate the expression of HPV E6 mRNA. In this study, we show that common and rare cervical precancer lesions, including those of adenocarcinoma (AC), which are usually difficult to diagnose using classical procedures, also expressed high levels of Brn-3a and can be diagnosed by measuring the levels of Brn-3a and E6 mRNAs

    Differential regulation of different human papilloma virus variants by the POU family transcription factor Brn-3a

    Get PDF
    The Brn-3a POU family transcription factor is over-expressed in human cervical carcinoma biopsies and is able to activate expression of the human papilloma virus type 16 (HPV-16) upstream regulatory region (URR), which drives the expression of the E6 and E7 oncoproteins. Inhibition of Brn-3a expression in human cervical cancer cells inhibits HPV gene expression and reduces cellular growth and anchorage independence in vitro as well as the ability to form tumours in vivo. Here we show that Brn-3a differentially regulates different HPV-16 variants that have previously been shown to be associated with different risks of progression to cervical carcinoma. In human cervical material Brn-3a levels correlate directly with HPV E6 levels in individuals infected with a high risk variant of HPV-16 whereas this is not the case for a low risk variant. Moreover, the URRs of high and intermediate risk variants are activated by Brn-3a in transfection assays whereas the URR of a low risk variant is not. The change of one or two bases in a low risk variant URR to their equivalent in a higher risk URR can render the URR responsive to Brn-3a and vice versa. These results help explain why the specific interplay between viral and cellular factors necessary for the progression to cervical carcinoma, only occurs in a minority of those infected with HPV-16

    Stable expression of a recombinant human antinucleosome antibody to investigate relationships between antibody sequence, binding properties, and pathogenicity

    Get PDF
    When purified under rigorous conditions, some murine anti-double-stranded-DNA (anti-dsDNA) antibodies actually bind chromatin rather than dsDNA. This suggests that they may actually be antinucleosome antibodies that only appear to bind dsDNA when they are incompletely dissociated from nucleosomes. Experiments in murine models suggest that antibody–nucleosome complexes may play a crucial role in the pathogenesis of glomerulonephritis in systemic lupus erythematosus. Some human monoclonal anti-DNA antibodies are pathogenic when administered to mice with severe combined immunodeficiency (SCID). Our objective was to achieve stable expression of sequence-altered variants of one such antibody, B3, in Chinese hamster ovary (CHO) cells. Purified antibodies secreted by these cells were tested to investigate whether B3 is actually an antinucleosome antibody. The pathogenic effects of the antibodies were tested by implanting CHO cells secreting them into SCID mice. Purified B3 does not bind to dsDNA unless supernatant from cultured cells is added, but does bind to nucleosomes. The strength of binding to dsDNA and nucleosomes is dependent on the sequence of the light chain. Mice that received CHO cells secreting wild-type B3 developed more proteinuria and died earlier than control mice that received nonsecreting CHO cells or mice that received B3 with a single light chain mutation. However, none of the mice had histological changes or deposition of human immunoglobulin G in the kidneys. Sequence changes may alter the pathogenicity of B3, but further studies using different techniques are needed to investigate this possibility
    corecore