6,480 research outputs found

    Hyperbolic Chaos of Turing Patterns

    Full text link
    We consider time evolution of Turing patterns in an extended system governed by an equation of the Swift-Hohenberg type, where due to an external periodic parameter modulation long-wave and short-wave patterns with length scales related as 1:3 emerge in succession. We show theoretically and demonstrate numerically that the spatial phases of the patterns, being observed stroboscopically, are governed by an expanding circle map, so that the corresponding chaos of Turing patterns is hyperbolic, associated with a strange attractor of the Smale-Williams solenoid type. This chaos is shown to be robust with respect to variations of parameters and boundary conditions.Comment: 4 pages, 4 figure

    Derived categories of cubic fourfolds

    Full text link
    We discuss the structure of the derived category of coherent sheaves on cubic fourfolds of three types: Pfaffian cubics, cubics containing a plane and singular cubics, and discuss its relation to the rationality of these cubics.Comment: 18 page

    Instanton bundles on Fano threefolds

    Full text link
    We introduce the notion of an instanton bundle on a Fano threefold of index 2. For such bundles we give an analogue of a monadic description and discuss the curve of jumping lines. The cases of threefolds of degree 5 and 4 are considered in a greater detail.Comment: 31 page, to appear in CEJ

    Smooth and Non-Smooth Dependence of Lyapunov Vectors upon the Angle Variable on a Torus in the Context of Torus-Doubling Transitions in the Quasiperiodically Forced Henon Map

    Get PDF
    A transition from a smooth torus to a chaotic attractor in quasiperiodically forced dissipative systems may occur after a finite number of torus-doubling bifurcations. In this paper we investigate the underlying bifurcational mechanism which seems to be responsible for the termination of the torus-doubling cascades on the routes to chaos in invertible maps under external quasiperiodic forcing. We consider the structure of a vicinity of a smooth attracting invariant curve (torus) in the quasiperiodically forced Henon map and characterize it in terms of Lyapunov vectors, which determine directions of contraction for an element of phase space in a vicinity of the torus. When the dependence of the Lyapunov vectors upon the angle variable on the torus is smooth, regular torus-doubling bifurcation takes place. On the other hand, the onset of non-smooth dependence leads to a new phenomenon terminating the torus-doubling bifurcation line in the parameter space with the torus transforming directly into a strange nonchaotic attractor. We argue that the new phenomenon plays a key role in mechanisms of transition to chaos in quasiperiodically forced invertible dynamical systems.Comment: 24 pages, 9 figure

    Formation of singularities on the surface of a liquid metal in a strong electric field

    Full text link
    The nonlinear dynamics of the free surface of an ideal conducting liquid in a strong external electric field is studied. It is establish that the equations of motion for such a liquid can be solved in the approximation in which the surface deviates from a plane by small angles. This makes it possible to show that on an initially smooth surface for almost any initial conditions points with an infinite curvature corresponding to branch points of the root type can form in a finite time.Comment: 14 page

    K*-couplings for the antidecuplet excitation

    Full text link
    We estimate the coupling of the K* vector meson to the N-->Theta+ transition employing unitary symmetry, vector meson dominance, and results from the GRAAL Collaboration for eta photoproduction off the neutron. Our small numerical value for the coupling constant is consistent with the non-observation of the Theta+ in recent CLAS searches for its photoproduction. We also estimate the K*-coupling for the N-->Sigma* excitation, with Sigma* being the Sigma-like antidecuplet partner of the Theta+-baryon.Comment: 9 pages, 1 figure. Minor changes in text and abstract, references added; version to appear in Phys. Rev.

    Controlling the transverse instability of dark solitons and nucleation of vortices by a potential barrier

    Get PDF
    We study possibilities to suppress the transverse modulational instability (MI) of dark-soliton stripes in two-dimensional (2D) Bose-Einstein condensates (BECs) and self-defocusing bulk optical waveguides by means of quasi-1D structures. Adding an external repulsive barrier potential (which can be induced in BEC by a laser sheet, or by an embedded plate in optics), we demonstrate that it is possible to reduce the MI wavenumber band, and even render the dark-soliton stripe completely stable. Using this method, we demonstrate the control of the number of vortex pairs nucleated by each spatial period of the modulational perturbation. By means of the perturbation theory, we predict the number of the nucleated vortices per unit length. The analytical results are corroborated by the numerical computation of eigenmodes of small perturbations, as well as by direct simulations of the underlying Gross-Pitaevskii/nonlinear Schr\"{o}dinger equation.Comment: 10 pages, 7 figures. To appear on Phys. Rev. A, 201
    • …
    corecore