7,880 research outputs found
Adiabatic times for Markov chains and applications
We state and prove a generalized adiabatic theorem for Markov chains and
provide examples and applications related to Glauber dynamics of Ising model
over Z^d/nZ^d. The theorems derived in this paper describe a type of adiabatic
dynamics for l^1(R_+^n) norm preserving, time inhomogeneous Markov
transformations, while quantum adiabatic theorems deal with l^2(C^n) norm
preserving ones, i.e. gradually changing unitary dynamics in C^n
Quantum critical behavior in disordered itinerant ferromagnets: Logarithmic corrections to scaling
The quantum critical behavior of disordered itinerant ferromagnets is
determined exactly by solving a recently developed effective field theory. It
is shown that there are logarithmic corrections to a previous calculation of
the critical behavior, and that the exact critical behavior coincides with that
found earlier for a phase transition of undetermined nature in disordered
interacting electron systems. This confirms a previous suggestion that the
unspecified transition should be identified with the ferromagnetic transition.
The behavior of the conductivity, the tunneling density of states, and the
phase and quasiparticle relaxation rates across the ferromagnetic transition is
also calculated.Comment: 15pp., REVTeX, 8 eps figs, final version as publishe
Tricritical Points in Random Combinatorics: the (2+p)-SAT case
The (2+p)-Satisfiability (SAT) problem interpolates between different classes
of complexity theory and is believed to be of basic interest in understanding
the onset of typical case complexity in random combinatorics. In this paper, a
tricritical point in the phase diagram of the random -SAT problem is
analytically computed using the replica approach and found to lie in the range
. These bounds on are in agreement with previous
numerical simulations and rigorous results.Comment: 7 pages, 1 figure, RevTeX, to appear in J.Phys.
Anomalous Pinning Fields in Helical Magnets: Screening of the Quasiparticle Interaction
The spin-orbit interaction strength g_so in helical magnets determines both
the pitch wave number q and the critical field H_c1 where the helix aligns with
an external magnetic field. Within a standard Landau-Ginzburg-Wilson (LGW)
theory, a determination of g_so in MnSi and FeGe from these two observables
yields values that differ by a factor of 20. This discrepancy is remedied by
considering the fermionic theory underlying the LGW theory, and in particular
the effects of screening on the effective electron-electron interaction that
results from an exchange of helical fluctuations.Comment: 4pp, 2 fig
Possible triplet superconductivity in MOSFETs
A theory that predicts a spin-triplet, even-parity superconducting ground
state in two-dimensional electron systems is re-analyzed in the light of recent
experiments showing a possible insulator-to-conductor transition in such
systems. It is shown that the observations are consistent with such an exotic
superconductivity mechanism, and predictions are made for experiments that
would further corroborate or refute this proposal.Comment: 4 pp., REVTeX, psfig, 1 eps fig, final version as publishe
Universal low-temperature tricritical point in metallic ferromagnets and ferrimagnets
An earlier theory of the quantum phase transition in metallic ferromagnets is
revisited and generalized in three ways. It is shown that the mechanism that
leads to a fluctuation-induced first-order transition in metallic ferromagnets
with a low Curie temperature is valid, (1) irrespective of whether the magnetic
moments are supplied by the conduction electrons or by electrons in another
band, (2) for ferromagnets in the XY and Ising universality classes as well as
for Heisenberg ferromagnets, and (3) for ferrimagnets as well as for
ferromagnets. This vastly expands the class of materials for which a
first-order transition at low temperatures is expected, and it explains why
strongly anisotropic ferromagnets, such as UGe2, display a first-order
transition as well as Heisenberg magnets.Comment: 11pp, 2 fig
Columnar Fluctuations as a Source of Non-Fermi-Liquid Behavior in Weak Metallic Magnets
It is shown that columnar fluctuations, in conjunction with weak quenched
disorder, lead to a T^{3/2} temperature dependence of the electrical
resistivity. This is proposed as an explanation of the observed
non-Fermi-liquid behavior in the helimagnet MnSi, with one possible realization
of the columnar fluctuations provided by skyrmion lines that have independently
been proposed to be present in this material.Comment: 4pp, 4 figure
- …