2,712 research outputs found

    Analytical performance assessment of a novel active mooring system for load reduction in marine energy converters

    Get PDF
    This is the author accepted manuscript. The final version is available from the publisher via the DOI in this record.Reliability and storm survival of Marine Energy Converters are critical to their commercial development and deployment. The Intelligent Active Mooring System (IAMS) is a novel device intended to minimise extreme and fatigue loading in mooring lines through a non-linear load–extension curve that is variable in operation to adjust to the prevailing metocean conditions. An analytical model of IAMS, validated by physical model tests at the Dynamic Marine Component test facility at the University of Exeter, is used in a numerical simulation of the performance of IAMS as part of the mooring system of the South West Mooring Test Facility buoy. A 10 m length of IAMS can reduce the rms line tension in normal operating conditions by up to 21% and the peak line tension in storm conditions by up to 21% when compared to braided nylon mooring lines. Peak line tension reductions of over 50% can be achieved if a longer IAMS unit is used. The resulting mooring system can be optimised to give load reductions in a wide range of metocean conditions; while variable pre-tension could be used for tidal range compensation or to ease access for installation and maintenance.The work reported here is part of a joint project between AWS Ocean Ltd., Teqniqa Systems Ltd. and the University of Exeter. The project was funded in part by the Technology Strategy Board (now Innovate UK) grant number 101970

    Immunodepletion and hypoxia preconditioning of mouse vompact bone cells as a novel protocol to isolate highly immunosuppressive mesenchymal stem cells

    Get PDF
    Prepublished on Liebert Instant Online December 21, 2016Compact bones (CB) are major reservoirs of mouse mesenchymal stem cells (mMSC). Here, we established a protocol to isolate MSC from CB and tested their immunosuppressive potential. Collagenase type II digestion of BM-flushed CB from C57B/6 mice was performed to liberate mMSC precursors from bone surfaces to establish nondepleted mMSC. CB cells were also immunodepleted based on the expression of CD45 (leukocytes) and TER119 (erythroid cells) to eliminate hematopoietic cells. CD45-TER119- CB cells were subsequently used to generate depleted mMSC. CB nondepleted and depleted mMSC progenitors were cultured under hypoxic conditions to establish primary mMSC cultures. CB depleted mMSC compared to nondepleted mMSC showed greater cell numbers at subculturing and had increased functional ability to differentiate into adipocytes and osteoblasts. CB depleted mMSC had high purity and expressed key mMSC markers (>85% Sca-1, CD29, CD90) with no mature hematopoietic contaminating cells (<5% CD45, CD11b) when subcultured to passage 5 (P5). Nondepleted mMSC cultures, however, were less pure and heterogenous with <72% Sca-1+, CD29+, and CD90+ cells at early passages (P1 or P2), along with high percentages of contaminating CD11b+ (35.6%) and CD45+ (39.2%) cells that persisted in culture long term. Depleted and nondepleted mMSC nevertheless exhibited similar potency to suppress total (CD3+), CD4+ and CD8+ T cell proliferation, in a dendritic cell allostimulatory one-way mixed lymphocyte reaction. CB depleted mMSC, pretreated with proinflammatory cytokines IFN-γ, TNF-α, and IL-17A, showed superior suppression of CD8+ T cell, but not CD4+ T cell proliferation, relative to untreated-mMSC. In conclusion, CB depleted mMSC established under hypoxic conditions and treated with selective cytokines represent a novel source of potent immunosuppressive MSC. As these cells have enhanced immune modulatory function, they may represent a superior product for use in clinical allotransplantation.Kisha Nandini Sivanathan, Stan Gronthos, Shane T. Grey, Darling Rojas-Canales, and Patrick T. Coate

    Performance and reliability testing of an active mooring system for peak load reduction

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordOffshore renewable energy systems are generally required to operate in exposed offshore locations for long deployment periods at low cost. This requires innovative new mooring system solutions to go beyond the existing offshore industry designs. A number of novel mooring systems have recently been proposed which decouple mooring line compliance and minimum breaking load, offering multiple benefits to designers. Demonstrating reliability for such highly novel systems where standards do not yet exist is a common problem both for mooring systems specifically and in offshore renewable applications generally. A performance and reliability test method is proposed here and is applied to a novel mooring system, the Intelligent Active Mooring System. The line stiffness and damping properties of Intelligent Active Mooring System can be optimised to the prevailing metocean conditions without compromising minimum breaking load; the pre-tension is also adjustable for tidal range compensation or for service access. The article presents the results of a feasibility study for Intelligent Active Mooring System including detailed, large-scale physical performance tests that demonstrate load reductions under normal operating and extreme sea state conditions. The rationale and findings for an accelerated reliability test regime that quantifies the ultimate load capacity of the component and gives insight into the governing failure modes are also presented. The presented test approach provides assurance for the overall system integrity.The project was funded in part by the Technology Strategy Board (now Innovate UK) grant number 101970

    Operation Moshtarak and the manufacture of credible, “heroic” warfare

    Get PDF
    Richard Lance Keeble argues that Fleet Street’s coverage of the Afghan conflict has served largely to promote the interests of the military/industrial/media complex – and marginalise the views of the public who have consistently appealed in polls for the troops to be brought back hom

    Transcriptome profiling of IL-17A preactivated mesenchymal stem cells: a comparative study to unmodified and IFN-gamma modified mesenchymal stem cells

    Get PDF
    Published 15 February 2017Human mesenchymal stem cells pretreatment with IL-17A (MSC-17) potently enhances T cell immunosuppression but not their immunogenicity, in addition to avidly promoting the induction of suppressive regulatory T cells. The aim of this study was to identify potential mechanisms by which human MSC-17 mediate their superior immunomodulatory function. Untreated-MSC (UT-MSC), IFN-γ treated MSC (MSC-γ), and MSC-17 were assessed for their gene expression profile by microarray. Significantly regulated genes were identified for their biological functions (Database for Annotation, Visualisation and Integrated Discovery, DAVID). Microarray analyses identified 1278 differentially regulated genes between MSC-γ and UT-MSC and 67 genes between MSC-17 and UT-MSC. MSC-γ were enriched for genes involved in immune response, antigen processing and presentation, humoral response, and complement activation, consistent with increased MSC-γ immunogenicity. MSC-17 genes were associated with chemotaxis response, which may be involved in T cell recruitment for MSC-17 immunosuppression. MMP1, MMP13, and CXCL6 were highly and specifically expressed in MSC-17, which was further validated by real-time PCR. Thus, MMPs and chemokines may play a key role in mediating MSC-17 superior immunomodulatory function. MSC-17 represent a potential cellular therapy to suppress immunological T cell responses mediated by expression of an array of immunoregulatory molecules.Kisha Nandini Sivanathan, Darling Rojas-Canales, Shane T. Grey, Stan Gronthos, and Patrick T. Coate
    corecore