5,191 research outputs found
Time and M-theory
We review our recent proposal for a background independent formulation of a
holographic theory of quantum gravity. The present review incorporates the
necessary background material on geometry of canonical quantum theory,
holography and spacetime thermodynamics, Matrix theory, as well as our specific
proposal for a dynamical theory of geometric quantum mechanics, as applied to
Matrix theory. At the heart of this review is a new analysis of the conceptual
problem of time and the closely related and phenomenologically relevant problem
of vacuum energy in quantum gravity. We also present a discussion of some
observational implications of this new viewpoint on the problem of vacuum
energy.Comment: 86 pages, 5 figures, LaTeX, typos fixed, references added, and Sec.
6.2 revised; invited review for Int. J. Mod. Phys.
Damped Lyman alpha systems and disk galaxies: number density, column density distribution and gas density
We present a comparison between the observed properties of damped Lyman alpha
systems (DLAs) and the predictions of simple models for the evolution of
present day disk galaxies, including both low and high surface brightness
galaxies. We focus in particular on the number density, column density
distribution and gas density of DLAs, which have now been measured in
relatively large samples of absorbers. From the comparison we estimate the
contribution of present day disk galaxies to the population of DLAs, and how it
varies with redshift. Based on the differences between the models and the
observations, we also speculate on the nature of the fraction of DLAs which
apparently do not arise in disk galaxies.Comment: 11 pages, 10 figures, accepted in MNRA
Morphology and Redshifts of Extremely Red Galaxies in the GOODS/CDFS deep ISAAC field
We present the photometric redshift distribution of a sample of 198 Extremely
Red Galaxies (ERGs) with Ks3.92 (Vega), selected by Roche et al.
in 50.4 sq. arcmin of the Chandra Deep Field South (CDFS). The sample has been
obtained using ISAAC-VLT and ACS-HST GOODS public data. We also show the
results of a morphological study of the 72 brightest ERGs in the z band (z<25,
AB).Comment: 2 pages, 2 figures. To appear in the proceedings of the ESO/USM/MPE
Workshop "Multiwavelength Mapping of Galaxy Formation and Evolution", Venice,
October 13-16, 200
Analysis of wasp-waisted hysteresis loops in magnetic rocks
The random-field Ising model of hysteresis is generalized to dilute magnets
and solved on a Bethe lattice. Exact expressions for the major and minor
hysteresis loops are obtained. In the strongly dilute limit the model provides
a simple and useful understanding of the shapes of hysteresis loops in magnetic
rock samples.Comment: 11 pages, 4 figure
The Role of Starbursts in the Formation of Galaxies & Active Galactic Nuclei
Starbursts are episodes of intense star-formation in the central regions of
galaxies, and are the sites of roughly 25% of the high-mass star-formation in
the local universe. In this contribution I review the role starbursts play in
the formation and evolution of galaxies, the intergalactic medium, and active
galactic nuclei. Four major conclusions are drawn. 1) Starburst galaxies are
good analogues (in fact, the only plausible local analogues) to the known
population of star-forming galaxies at high-redshift. 2) Integrated over cosmic
time, supernova-driven galactic-winds (`superwinds') play an essential role in
the evolution of galaxies and the inter-galactic medium. 3) Circumnuclear
starbursts are an energetically-significant component of the Seyfert
phenomenon. 4) The evolution of the population of the host galaxies of
radio-quiet quasars is significantly different than that of powerful radio
galaxies, and is at least qualitatively consistent with the standard picture of
the hierarchical assembly of massive galaxies at relatively late times.Comment: 16 pages, 4 figures, Royal Society discussion meeting `The formation
of galaxies
Unveiling the nature of bright z ~ 7 galaxies with the Hubble Space Telescope
We present new Hubble Space Telescope/Wide Field Camera 3 imaging of 25
extremely luminous (-23.2 < M_ UV < -21.2) Lyman-break galaxies (LBGs) at z ~
7. The sample was initially selected from 1.65 deg^2 of ground-based imaging in
the UltraVISTA/COSMOS and UDS/SXDS fields, and includes the extreme Lyman-alpha
emitters, `Himiko' and `CR7'. A deconfusion analysis of the deep Spitzer
photometry available suggests that these galaxies exhibit strong rest-frame
optical nebular emission lines (EW_0(H_beta + [OIII]) > 600A). We find that
irregular, multiple-component morphologies suggestive of clumpy or merging
systems are common (f_multi > 0.4) in bright z ~ 7 galaxies, and ubiquitous at
the very bright end (M_UV < -22.5). The galaxies have half-light radii in the
range r_1/2 ~ 0.5-3 kpc. The size measurements provide the first determination
of the size-luminosity relation at z ~ 7 that extends to M_UV ~ -23. We find
the relation to be steep with r_1/2 ~ L^1/2. Excluding clumpy, multi-component
galaxies however, we find a shallower relation that implies an increased
star-formation rate surface density in bright LBGs. Using the new, independent,
HST/WFC3 data we confirm that the rest-frame UV luminosity function at z ~ 7
favours a power-law decline at the bright-end, compared to an exponential
Schechter function drop-off. Finally, these results have important implications
for the Euclid mission, which we predict will detect > 1000 similarly bright
galaxies at z ~ 7. Our new HST imaging suggests that the vast majority of these
galaxies will be spatially resolved by Euclid, mitigating concerns over dwarf
star contamination.Comment: 26 pages, 11 figures and 5 tables. Updated to match MNRAS accepted
versio
A submillimetre survey of the star-formation history of radio galaxies
We present the results of the first major systematic submillimetre survey of
radio galaxies spanning the redshift range 1 < z < 5. The primary aim of this
work is to elucidate the star-formation history of this sub-class of elliptical
galaxies by tracing the cosmological evolution of dust mass. Using SCUBA on the
JCMT we have obtained 850-micron photometry of 47 radio galaxies to a
consistent rms depth of 1 mJy, and have detected dust emission in 14 cases. The
radio galaxy targets have been selected from a series of low-frequency radio
surveys of increasing depth (3CRR, 6CE, etc), in order to allow us to separate
the effects of increasing redshift and increasing radio power on submillimetre
luminosity. Although the dynamic range of our study is inevitably small, we
find clear evidence that the typical submillimetre luminosity (and hence dust
mass) of a powerful radio galaxy is a strongly increasing function of redshift;
the detection rate rises from 15 per cent at z 2.5,
and the average submillimetre luminosity rises as (1+z)^3 out to z~4. Moreover
our extensive sample allows us to argue that this behaviour is not driven by
underlying correlations with other radio galaxy properties such as radio power,
radio spectral index, or radio source size/age. Although radio selection may
introduce other more subtle biases, the redshift distribution of our detected
objects is in fact consistent with the most recent estimates of the redshift
distribution of comparably bright submillimetre sources discovered in blank
field surveys. The evolution of submillimetre luminosity found here for radio
galaxies may thus be representative of massive ellipticals in general.Comment: 31 pages - 10 figures in main text, 3 pages of figures in appendix.
This revised version has been re-structured, but the analysis and conclusions
have not changed. Accepted for publication in MNRA
Quasars, their host galaxies, and their central black holes
We present the final results from our deep HST imaging study of the hosts of
radio-quiet quasars (RQQs), radio-loud quasars (RLQs) and radio galaxies (RGs).
We describe new WFPC2 R-band observations for 14 objects and model these images
in conjunction with the data already reported in McLure et al (1999). We find
that spheroidal hosts become more prevalent with increasing nuclear luminosity
such that, for nuclear luminosities M_V < -23.5, the hosts of both radio-loud
and radio-quiet AGN are virtually all massive ellipticals. Moreover we
demonstrate that the basic properties of these hosts are indistinguishable from
those of quiescent, evolved, low-redshift ellipticals of comparable mass. This
result kills any lingering notion that radio-loudness is determined by
host-galaxy morphology, and also sets severe constraints on evolutionary
schemes which attempt to link low-z ULIRGs with RQQs. Instead, we show that our
results are as expected given the relationship between black-hole and spheroid
mass established for nearby galaxies, and apply this relation to estimate the
mass of the black hole in each object. The results agree very well with
completely-independent estimates based on nuclear emission-line widths; all the
quasars in our sample have M(bh) > 5 x 10^8 solar masses, while the radio-loud
objects are confined to M(bh) > 10^9 solar masses. This apparent mass-threshold
difference, which provides a natural explanation for why RQQs outnumber RLQs by
a factor of 10, appears to reflect the existence of a minimum and maximum level
of black-hole radio output which is a strong function of black-hole mass.
Finally, we use our results to estimate the fraction of massive
spheroids/black-holes which produce quasar-level activity. This fraction is
\~0.1% at the present day, rising to > 10% at z = 2-3.Comment: Revised version accepted for publication in Monthly Notices of the
Royal Astronomical Society. 46 pages, the final 19 of which comprise an
Appendix. 15 figures in main text. A further 14 4-panel greyscale plots and
14 line plots which appear in the Appendix have been reproduced here with
reduced quality due to space limitations. A full resolution copy of the
manuscript can be obtained via ftp://ftp.roe.ac.uk/pub/jsd/dunlop2002.ps.g
- …