17,226 research outputs found

    Exploring transmission Kikuchi diffraction using a Timepix detector

    Get PDF
    Electron backscatter diffraction (EBSD) is a well-established scanning electron microscope (SEM)-based technique [1]. It allows the non-destructive mapping of the crystal structure, texture, crystal phase and strain with a spatial resolution of tens of nanometers. Conventionally this is performed by placing an electron sensitive screen, typically consisting of a phosphor screen combined with a charge coupled device (CCD) camera, in front of a specimen, usually tilted 70° to the normal of the exciting electron beam. Recently, a number of authors have shown that a significant increase in spatial resolution is achievable when Kikuchi diffraction patterns are acquired in transmission geometry; that is when diffraction patterns are generated by electrons transmitted through an electron-transparent, usually thinned, specimen. The resolution of this technique, called transmission Kikuchi diffraction (TKD), has been demonstrated to be better than 10 nm [2,3]. We have recently demonstrated the advantages of a direct electron detector, Timepix [4,5], for the acquisition of standard EBSD patterns [5]. In this article we will discuss the advantages of Timepix to perform TKD and for acquiring spot diffraction patterns and more generally for acquiring scanning transmission electron microscopy micrographs in the SEM. Particularly relevant for TKD, is its very compact size, which allows much more flexibility in the positioning of the detector in the SEM chamber. We will furthermore show recent results using Timepix as a virtual forward scatter detector, and will illustrate the information derivable on producing images through processing of data acquired from different areas of the detector. We will show results from samples ranging from gold nanoparticles to nitride semiconductor nanorods

    Spin-Current Relaxation Time in Spin-Polarized Heisenberg Paramagnets

    Full text link
    We study the spatial Fourier transform of the spin correlation function G_q(t) in paramagnetic quantum crystals by direct simulation of a 1d lattice of atoms interacting via a nearest-neighbor Heisenberg exchange Hamiltonian. Since it is not practical to diagonalize the s=1/2 exchange Hamiltonian for a lattice which is of sufficient size to study long-wavelength (hydrodynamic) fluctuations, we instead study the s -> infinity limit and treat each spin as a vector with a classical equation of motion. The simulations give a detailed picture of the correlation function G_q(t) and its time derivatives. At high polarization, there seems to be a hierarchy of frequency scales: the local exchange frequency, a wavelength-independent relaxation rate 1/tau that vanishes at large polarization P ->1, and a wavelength-dependent spin-wave frequency proportional to q^2. This suggests a form for the correlation function which modifies the spin diffusion coefficients obtained in a moments calculation by Cowan and Mullin, who used a standard Gaussian ansatz for the second derivative of the correlation function.Comment: 6 pages, 3 figure

    Making automation pay - cost & throughput trade-offs in the manufacture of large composite components

    Get PDF
    The automation of complex manufacturing operations can provide significant savings over manual processes, and there remains much scope for increasing automation in the production of large scale structural composites. However the relationships between driving variables are complex, and the achievable throughput rate and corresponding cost for a given design are often not apparent. The deposition rate, number of machines required and unit production rates needed are interrelated and consequently the optimum unit cost is difficult to predict. A detailed study of the costs involved for a series of composite wing cover panels with different manufacturing requirements was undertaken. Panels were sized to account for manufacturing requirements and structural load requirements allowing both manual and automated lay-up procedures to influence design. It was discovered that the introduction of automated tape lay-up can significantly reduce material unit cost, and improve material utilisation, however higher production rates are needed to see this benefit

    Theoretical study of resonant x-ray emission spectroscopy of Mn films on Ag

    Full text link
    We report a theoretical study on resonant x-ray emission spectra (RXES) in the whole energy region of the Mn L2,3L_{2,3} white lines for three prototypical Mn/Ag(001) systems: (i) a Mn impurity in Ag, (ii) an adsorbed Mn monolayer on Ag, and (iii) a thick Mn film. The calculated RXES spectra depend strongly on the excitation energy. At L3L_3 excitation, the spectra of all three systems are dominated by the elastic peak. For excitation energies around L2L_2, and between L3L_3 and L2L_2, however, most of the spectral weight comes from inelastic x-ray scattering. The line shape of these inelastic ``satellite'' structures changes considerably between the three considered Mn/Ag systems, a fact that may be attributed to changes in the bonding nature of the Mn-dd orbitals. The system-dependence of the RXES spectrum is thus found to be much stronger than that of the corresponding absorption spectrum. Our results suggest that RXES in the Mn L2,3L_{2,3} region may be used as a sensitive probe of the local environment of Mn atoms.Comment: 9 pages, 11 figure

    Abdominal intercostal hernia: a rare complication after blunt trauma.

    Get PDF
    Abdominal intercostal hernia (AIH) is uncommonly reported in the literature with only 20 cases reported to date.1–3 We report a case of a delayed incarcerated AIH secondary to blunt trauma from a motor vehicle accident in which the colon and diaphragm herniated through an associated chest defect that was repaired successfully through a transabdominal approach using primary repair of the defect in combination with onlay porcine patch reinforcement

    Judith Cowan: the capacity of things: Artist's inserts and interviews.

    Get PDF
    The book consists of three different interpretations of her work (by the two editors and Stella Santacatterina); interviews with Richard Wentworth and Susan Butler and image/texts by Judith Cowan

    Neurophysiology

    Get PDF
    Contains reports on three research projects.Bell Telephone Laboratories, IncorporatedNational Institutes of HealthTeagle Foundation, IncorporatedUnited States Air Force (WADD Contract AF33(616)-7783

    Manipulation and Detection of a Trapped Yb+ Ion Hyperfine Qubit

    Full text link
    We demonstrate the use of trapped ytterbium ions as quantum bits for quantum information processing. We implement fast, efficient state preparation and state detection of the first-order magnetic field-insensitive hyperfine levels of 171Yb+, with a measured coherence time of 2.5 seconds. The high efficiency and high fidelity of these operations is accomplished through the stabilization and frequency modulation of relevant laser sources.Comment: 10 pages, 9 figures, 1 tabl
    • …
    corecore