19,642 research outputs found

    Efficient Simulation of Quantum State Reduction

    Get PDF
    The energy-based stochastic extension of the Schrodinger equation is a rather special nonlinear stochastic differential equation on Hilbert space, involving a single free parameter, that has been shown to be very useful for modelling the phenomenon of quantum state reduction. Here we construct a general closed form solution to this equation, for any given initial condition, in terms of a random variable representing the terminal value of the energy and an independent Brownian motion. The solution is essentially algebraic in character, involving no integration, and is thus suitable as a basis for efficient simulation studies of state reduction in complex systems.Comment: 4 pages, No Figur

    Nuclear modification at sqrt{s_{NN}}=17.3 GeV, measured at NA49

    Full text link
    Transverse momentum spectra up to 4.5 GeV/c were measured around midrapidity in Pb+Pb reactions at sqrt{s_{NN}}=17.3 GeV, for pi^{+/-}, p, pbar and K^{+/-}, by the NA49 experiment. The nuclear modification factors R_{AA}, R_{AA/pA} and R_{CP} were extracted and are compared to RHIC results at sqrt{s_{NN}}=200 GeV. The modification factor R_{AA} shows a rapid increase with transverse momentum in the covered region. The modification factor R_{CP} shows saturation well below unity in the pi^{+/-} channel. The extracted R_{CP} values follow the 200 GeV RHIC results closely in the available transverse momentum range for all particle species. For pi^{+/-} above 2.5 GeV/c transverse momentum, the measured suppression is smaller than that observed at RHIC. The nuclear modification factor R_{AA/pA} for pi^{+/-} stays well below unity.Comment: Proceedings of Quark Matter 2008 conferenc

    Octonionic Version of Dirac Equations

    Full text link
    It is shown that a simple continuity condition in the algebra of split octonions suffices to formulate a system of differential equations that are equivalent to the standard Dirac equations. In our approach the particle mass and electro-magnetic potentials are part of an octonionic gradient function together with the space-time derivatives. As distinct from previous attempts to translate the Dirac equations into different number systems here the wave functions are real split octonions and not bi-spinors. To formulate positively defined probability amplitudes four different split octonions (transforming into each other by discrete transformations) are necessary, rather then two complex wave functions which correspond to particles and antiparticles in usual Dirac theory.Comment: Version accepted by Int. J Mod. Phy

    Schwinger Algebra for Quaternionic Quantum Mechanics

    Get PDF
    It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states NN \to \infty.Comment: 20 pages, Plain Te

    Representations of U(1,q) and Constructive Quaternion Tensor Products

    Full text link
    The representation theory of the group U(1,q) is discussed in detail because of its possible application in a quaternion version of the Salam-Weinberg theory. As a consequence, from purely group theoretical arguments we demonstrate that the eigenvalues must be right-eigenvalues and that the only consistent scalar products are the complex ones. We also define an explicit quaternion tensor product which leads to a set of additional group representations for integer ``spin''.Comment: 28 pages, Latex, Dipartimento di Fisica, Universita di Lecce INFN-Sezione di Lecc

    Collapse models with non-white noises

    Full text link
    We set up a general formalism for models of spontaneous wave function collapse with dynamics represented by a stochastic differential equation driven by general Gaussian noises, not necessarily white in time. In particular, we show that the non-Schrodinger terms of the equation induce the collapse of the wave function to one of the common eigenstates of the collapsing operators, and that the collapse occurs with the correct quantum probabilities. We also develop a perturbation expansion of the solution of the equation with respect to the parameter which sets the strength of the collapse process; such an approximation allows one to compute the leading order terms for the deviations of the predictions of collapse models with respect to those of standard quantum mechanics. This analysis shows that to leading order, the ``imaginary'' noise trick can be used for non-white Gaussian noise.Comment: Latex, 20 pages;references added and minor revisions; published as J. Phys. A: Math. Theor. {\bf 40} (2007) 15083-1509

    Breaking quantum linearity: constraints from human perception and cosmological implications

    Full text link
    Resolving the tension between quantum superpositions and the uniqueness of the classical world is a major open problem. One possibility, which is extensively explored both theoretically and experimentally, is that quantum linearity breaks above a given scale. Theoretically, this possibility is predicted by collapse models. They provide quantitative information on where violations of the superposition principle become manifest. Here we show that the lower bound on the collapse parameter lambda, coming from the analysis of the human visual process, is ~ 7 +/- 2 orders of magnitude stronger than the original bound, in agreement with more recent analysis. This implies that the collapse becomes effective with systems containing ~ 10^4 - 10^5 nucleons, and thus falls within the range of testability with present-day technology. We also compare the spectrum of the collapsing field with those of known cosmological fields, showing that a typical cosmological random field can yield an efficient wave function collapse.Comment: 13 pages, LaTeX, 3 figure

    Symmetry Breaking for Matter Coupled to Linearized Supergravity From the Perspective of the Current Supermultiplet

    Get PDF
    We consider a generic supersymmetric matter theory coupled to linearized supergravity, and analyze scenarios for spontaneous symmetry breaking in terms of vacuum expectation values of components of the current supermultiplet. When the vacuum expectation of the energy momentum tensor is zero, but the scalar current or pseudoscalar current gets an expectation, evaluation of the gravitino self energy using the supersymmetry current algebra shows that there is an induced gravitino mass term. The structure of this term generalizes the supergravity action with cosmological constant to theories with CP violation. When the vacuum expectation of the energy momentum tensor is nonzero, supersymmetry is broken; requiring cancellation of the cosmological constant gives the corresponding generalized gravitino mass formula.Comment: 11 page

    Regular subspaces of a quaternionic Hilbert space from quaternionic Hermite polynomials and associated coherent states

    Full text link
    We define quaternionic Hermite polynomials by analogy with two families of complex Hermite polynomials. As in the complex case, these polynomials consatitute orthogonal families of vectors in ambient quaternionic L2L^2-spaces. Using these polynomials, we then define regular and anti-regular subspaces of these L2L^2-spaces, the associated reproducing kernels and the ensuing quaternionic coherent states

    Multi-particle Correlations in Quaternionic Quantum Systems

    Full text link
    We investigate the outcomes of measurements on correlated, few-body quantum systems described by a quaternionic quantum mechanics that allows for regions of quaternionic curvature. We find that a multi-particle interferometry experiment using a correlated system of four nonrelativistic, spin-half particles has the potential to detect the presence of quaternionic curvature. Two-body systems, however, are shown to give predictions identical to those of standard quantum mechanics when relative angles are used in the construction of the operators corresponding to measurements of particle spin components.Comment: REVTeX 3.0, 16 pages, no figures, UM-P-94/54, RCHEP-94/1
    corecore