104 research outputs found
Mutual information rate and bounds for it
The amount of information exchanged per unit of time between two nodes in a
dynamical network or between two data sets is a powerful concept for analysing
complex systems. This quantity, known as the mutual information rate (MIR), is
calculated from the mutual information, which is rigorously defined only for
random systems. Moreover, the definition of mutual information is based on
probabilities of significant events. This work offers a simple alternative way
to calculate the MIR in dynamical (deterministic) networks or between two data
sets (not fully deterministic), and to calculate its upper and lower bounds
without having to calculate probabilities, but rather in terms of well known
and well defined quantities in dynamical systems. As possible applications of
our bounds, we study the relationship between synchronisation and the exchange
of information in a system of two coupled maps and in experimental networks of
coupled oscillators
Computationally Aided Design of a High-Performance Organic Semiconductor: The Development of a Universal Crystal Engineering Core
Herein, we describe the design and synthesis of a suite of molecules based on a benzodithiophene “universal crystal engineering core”. After computationally screening derivatives, a trialkylsilylethyne-based crystal engineering strategy was employed to tailor the crystal packing for use as the active material in an organic field-effect transistor. Electronic structure calculations were undertaken to reveal derivatives that exhibit exceptional potential for high-efficiency hole transport. The promising theoretical properties are reflected in the preliminary device results, with the computationally optimized material showing simple solution processing, enhanced stability, and a maximum hole mobility of 1.6 cm2 V−1 s−1
Sympathetic Activation and Baroreflex Function during Intradialytic Hypertensive Episodes
BACKGROUND: The mechanisms of intradialytic increases in blood pressure are not well defined. The present study was undertaken to assess the role of autonomic nervous system activation during intradialytic hypertensive episodes. METHODOLOGY/PRINCIPAL FINDINGS: Continuous interbeat intervals (IBI) and systolic blood pressure (SBP) were monitored during hemodialysis in 108 chronic patients. Intradialytic hypertensive episodes defined as a period of at least 10 mmHg increase in SBP between the beginning and the end of a dialysis session or hypertension resistant to ultrafiltration occurring during or immediately after the dialysis procedure, were detected in 62 out of 113 hemodialysis sessions. SBP variability, IBI variability and baroreceptor sensitivity (BRS) in the low (LF) and high (HF) frequency ranges were assessed using the complex demodulation technique (CDM). Intradialytic hypertensive episodes were associated with an increased (n = 45) or decreased (n = 17) heart rate. The maximal blood pressure was similar in both groups. In patients with increased heart rate the increase in blood pressure was associated with marked increases in SBP and IBI variability, with suppressed BRS indices and enhanced sympatho-vagal balance. In contrast, in those with decreased heart rate, there were no significant changes in the above parameters. End-of-dialysis blood pressure in all sessions associated with hypertensive episode was significantly higher than in those without such episodes. In logistic regression analysis, predialysis BRS in the low frequency range was found to be the main predictor of intradialytic hypertension. CONCLUSION/SIGNIFICANCE: Our data point to sympathetic overactivity with feed-forward blood pressure enhancement as an important mechanism of intradialytic hypertension in a significant proportion of patients. The triggers of increased sympathetic activity during hemodialysis remain to be determined. Intradialytic hypertensive episodes are associated with higher end-of-dialysis blood pressure, suggesting that intradialytic hypertension may play a role in generation of interdialytic hypertension
- …