47 research outputs found

    Synthesis and biological studies on dinuclear gold(I) complexes with Di-(N-Heterocyclic Carbene) ligands functionalized with carbohydrates

    Get PDF
    The design of novel metal complexes with N-heterocyclic carbene (NHC) ligands that display biological activity is an active research field in organometallic chemistry. One of the possible approaches consists of the use of NHC ligands functionalized with a carbohydrate moiety. Two novel Au(I)-Au(I) dinuclear complexes were synthesized; they present a neutral structure with one bridging diNHC ligand, having one or both heterocyclic rings decorated with a carbohydrate functionality. With the symmetric diNHC ligand, the dicationic dinuclear complex bearing two bridging diNHC ligands was also synthesized. The study was completed by analyzing the antiproliferative properties of these complexes, which were compared to the activity displayed by similar mononuclear Au(I) complexes and by the analogous bimetallic Au(I)-Au(I) complex not functionalized with carbohydrates

    Atum: Scalable Group Communication Using Volatile Groups

    Get PDF
    This paper presents Atum, a group communication middleware for a large, dynamic, and hostile environment. At the heart of Atum lies the novel concept of volatile groups: small, dynamic groups of nodes, each executing a state machine replication protocol, organized in a flexible overlay. Using volatile groups, Atum scatters faulty nodes evenly among groups, and then masks each individual fault inside its group. To broadcast messages among volatile groups, Atum runs a gossip protocol across the overlay. We report on our synchronous and asynchronous (eventually synchronous) implementations of Atum, as well as on three representative applications that we build on top of it: A publish/subscribe platform, a file sharing service, and a data streaming system. We show that (a) Atum can grow at an exponential rate beyond 1000 nodes and disseminate messages in polylogarithmic time (conveying good scalability); (b) it smoothly copes with 18% of nodes churning every minute; and (c) it is impervious to arbitrary faults, suffering no performance decay despite 5.8% Byzantine nodes in a system of 850 nodes

    Analogy by mapping spreading and abstraction in large multifunctional knowledge bases

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN012923 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Feature Selection for Nuclear Transient Diagnostics

    No full text
    HWR828, OECD HALDEN REACTOR PROJECT REPOR

    Single-Walled Carbon Nanohorns as Boosting Surface for the Analysis of Low-Molecular-Weight Compounds by SALDI-MS

    Get PDF
    Limits of Matrix-Assisted Laser Desorption Ionization (MALDI) mass spectrometry (MS) in the study of small molecules are due to matrix-related interfering species in the low m/z range. Single-walled carbon nanohorns (SWCNH) were here evaluated as a specific surface for the rapid analysis of amino acids and lipids by Surface-Assisted Laser Desorption Ionization (SALDI). The method was optimized for detecting twenty amino acids, mainly present as cationized species, with the [M+K]+ response generally 2-time larger than the [M+Na]+ one. The [M+Na]+/[M+K]+ signals ratio was tentatively correlated with the molecular weight, dipole moment and binding affinity, to describe the amino acids’ coordination ability. The SWCNH-based surface was also tested for analyzing triglycerides in olive oil samples, showing promising results in determining the percentage composition of fatty acids without any sample treatment. Results indicated that SWCNH is a promising substrate for the SALDI-MS analysis of low molecular weight compounds with different polarities, enlarging the analytical platforms for MALDI applications
    corecore