329 research outputs found
Gyne and drone production in bombus atratus (Hymenoptera: Apidae)
For over a decade, our research group has studied the biology of the native bumblebee, Bombus atratus, to investigate the feasibility of using it to pollinate crops such as tomato, strawberry, blackberry and peppers. Traditionally, captive breeding has depended on the use of captured wild queens to initiate the colonies. The goal of the current work is to investigate conditions required to produce new queens and drones in captivity. In this study, 31 colonies were evaluated under either greenhouse or open field conditions over a 15 month period. A total of 1492 drones (D) and 737 gynes (G, i.e., virgin queens) were produced by all colonies, with 16 colonies producing both drones and gynes (D&G), 11 producing only drones (D) and 4 producing neither. Some of the D&G colonies had more than one sexual phase, but no colonies produced exclusively gynes. More drones and fewer gynes were produced per colony under greenhouse conditions with the highest number of drones produced by D&G colonies. The numbers of immature stages per cell declined in colonies as increasingly more resources were allocated to the production of gynes and the maintenance of increased nest temperature
Acercamiento al final de la burbuja
Acercamiento al final de la burbuja es un experimento social empresarial y vivencial realizado por estudiantes del programa de finanzas y estructurado por el docente Julian Riaño, con el objetivo de que ellos tengan las facultades para Interpretar, analizar y predecir fenómenos económicos y financieros que afectan a las empresashttps://ciencia.lasalle.edu.co/simposios/1001/thumbnail.jp
IoT aplicado a sistemas de riego en agricultura: Un análisis de usabilidad
The Internet of Things favors using technological tools in rural environments thanks to the ability to connect to the Internet between devices that facilitate daily tasks. The research aims to evaluate the usability of the decision support system for irrigation in agriculture, AgroRIEGO, through the development of an IoT-based device. The sponsors of this project were the Ministry of Information and Communication Technologies and the Center of Excellence in the Internet of Things Appropriation (CEA-IoT) in Colombia. Among the methods used is the use of the heuristic evaluation technique, structured into 15 categories and 62 subcategories of assessment. This analysis was complemented by the contribution of a group of experts in the design and development of IoT applications and devices and agriculture to assess the system's attributes.El Internet de las Cosas favorece el aprovechamiento de las herramientas tecnológicas en ambientes rurales, gracias a la capacidad de conexión a Internet entre dispositivos que facilita el quehacer diario. El objetivo de la investigación es evaluar la usabilidad del sistema de soporte para la toma de decisiones de riego en el agro, AgroRIEGO, que se tiene desde el desarrollo de una aplicación de un dispositivo basado en IoT. El patrocinador de este proyecto fue el Ministerio de Tecnologías de Información y Comunicación y el Centro de Excelencia de Apropiación en Internet de las Cosas (CEA-IoT) en Colombia. Dentro de los métodos usados se encuentra el uso de la técnica de evaluación heurística, estructurada en 15 categorías y 62 subcategorías de valoración. Este análisis se complementa con el aporte de un grupo de expertos en el diseño y desarrollo de aplicaciones y dispositivos IoT y el agro para valorar los atributos del sistema
Sequencing of Vellozia Spp. genomes to understand drought tolerance and phosphorus acquisition in angiosperms.
PE1164. PAG 2019
Seasonal adaptation of the thermal‐based two‐source energy balance model for estimating evapotranspiration in a semiarid tree‐grass ecosystem
© 2020 by the authors.The thermal-based two-source energy balance (TSEB) model has accurately simulated energy fluxes in a wide range of landscapes with both remote and proximal sensing data. However, tree-grass ecosystems (TGE) have notably complex heterogeneous vegetation mixtures and dynamic phenological characteristics presenting clear challenges to earth observation and modeling methods. Particularly, the TSEB modeling structure assumes a single vegetation source, making it difficult to represent the multiple vegetation layers present in TGEs (i.e., trees and grasses) which have different phenological and structural characteristics. This study evaluates the implementation of TSEB in a TGE located in central Spain and proposes a new strategy to consider the spatial and temporal complexities observed. This was based on sensitivity analyses (SA) conducted on both primary remote sensing inputs (local SA) and model parameters (global SA). The model was subsequently modified considering phenological dynamics in semi-arid TGEs and assuming a dominant vegetation structure and cover (i.e., either grassland or broadleaved trees) for different seasons (TSEB-2S). The adaptation was compared against the default model and evaluated against eddy covariance (EC) flux measurements and lysimeters over the experimental site. TSEB-2S vastly improved over the default TSEB performance decreasing the mean bias and root-mean-square-deviation (RMSD) of latent heat (LE) from 40 and 82 W m−2 to −4 and 59 W m−2, respectively during 2015. TSEB-2S was further validated for two other EC towers and for different years (2015, 2016 and 2017) obtaining similar error statistics with RMSD of LE ranging between 57 and 63 W m−2. The results presented here demonstrate a relatively simple strategy to improve water and energy flux monitoring over a complex and vulnerable landscape, which are often poorly represented through remote sensing models.The research received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 721995. It was also funded by Ministerio de Economía y Competitividad through FLUXPEC CGL2012-34383 and SynerTGE CGL2015-G9095-R (MINECO/FEDER, UE) projects. The research infrastructure at the measurement site in Majadas de Tiétar was partly funded through the Alexander von Humboldt Foundation, ELEMENTAL (CGL 2017-83538-C3-3-R, MINECO-FEDER) and IMAGINA (PROMETEU 2019; Generalitat Valenciana).Peer reviewe
Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions
[EN] Comparison of the proteins of thermophilic, mesophilic, and psychrophilic prokaryotes has revealed several features characteristic to proteins adapted to high temperatures, which increase their thermostability. These characteristics include a profusion of disulfide bonds, salt bridges, hydrogen bonds, and hydrophobic interactions, and a depletion in intrinsically disordered regions. It is unclear, however, whether such differences can also be observed in eukaryotic proteins or when comparing proteins that are adapted to temperatures that are more subtly different. When an organism is exposed to high temperatures, a subset of its proteins is overexpressed (heat-induced proteins), whereas others are either repressed (heat-repressed proteins) or remain unaffected. Here, we determine the expression levels of all genes in the eukaryotic model system Arabidopsis thaliana at 22 and 37 degrees C, and compare both the amino acid compositions and levels of intrinsic disorder of heat-induced and heat-repressed proteins. We show that, compared to heat-repressed proteins, heat-induced proteins are enriched in electrostatically charged amino acids and depleted in polar amino acids, mirroring thermophile proteins. However, in contrast with thermophile proteins, heat-induced proteins are enriched in intrinsically disordered regions, and depleted in hydrophobic amino acids. Our results indicate that temperature adaptation at the level of amino acid composition and intrinsic disorder can be observed not only in proteins of thermophilic organisms, but also in eukaryotic heat-induced proteins; the underlying adaptation pathways, however, are similar but not the same.D.A.-P. and F.F. were supported by funds from the University of Nevada, Reno, and by pilot grants from Nevada INBRE (P20GM103440) and the Smooth Muscle Plasticity COBRE from the University of Nevada, Reno (5P30GM110767-04), both funded by the National Institute of General Medical Sciences (National Institutes of Health). M.X.R.-G. and M.A.F. were supported by grants from Science Foundation Ireland (12/IP/1637) and the Spanish Ministerio de Economia y Competitividad, Spain (MINECO-FEDER; BFU201236346 and BFU2015-66073-P) to MAF. MXRG was supported by a JAE DOC fellowship from the MINECO, Spain. F.V.-S. and M.A.P.-A. were supported by grant BIO2014-55946-P from MINECO-FEDER.Alvarez-Ponce, D.; Ruiz-González, M.; Vera Sirera, FJ.; Feyertag, F.; Perez Amador, MA.; Fares Riaño, MA. (2018). Arabidopsis Heat Stress-Induced Proteins Are Enriched in Electrostatically Charged Amino Acids and Intrinsically Disordered Regions. International Journal of Molecular Sciences. 19(8). https://doi.org/10.3390/ijms19082276S198Karshikoff, A., & Ladenstein, R. (2001). Ion pairs and the thermotolerance of proteins from hyperthermophiles: a ‘traffic rule’ for hot roads. Trends in Biochemical Sciences, 26(9), 550-557. doi:10.1016/s0968-0004(01)01918-1Strop, P., & Mayo, S. L. (2000). Contribution of Surface Salt Bridges to Protein Stability†,‡. Biochemistry, 39(6), 1251-1255. doi:10.1021/bi992257jPERUTZ, M. F., & RAIDT, H. (1975). Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature, 255(5505), 256-259. doi:10.1038/255256a0Argos, P., Rossmann, M. G., Grau, U. M., Zuber, H., Frank, G., & Tratschin, J. D. (1979). Thermal stability and protein structure. Biochemistry, 18(25), 5698-5703. doi:10.1021/bi00592a028Beeby, M., O’Connor, B. D., Ryttersgaard, C., Boutz, D. R., Perry, L. J., & Yeates, T. O. (2005). The Genomics of Disulfide Bonding and Protein Stabilization in Thermophiles. PLoS Biology, 3(9), e309. doi:10.1371/journal.pbio.0030309Haney, P. J., Badger, J. H., Buldak, G. L., Reich, C. I., Woese, C. R., & Olsen, G. J. (1999). Thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species. Proceedings of the National Academy of Sciences, 96(7), 3578-3583. doi:10.1073/pnas.96.7.3578Kreil, D. P. (2001). Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Research, 29(7), 1608-1615. doi:10.1093/nar/29.7.1608Tekaia, F., Yeramian, E., & Dujon, B. (2002). Amino acid composition of genomes, lifestyles of organisms, and evolutionary trends: a global picture with correspondence analysis. Gene, 297(1-2), 51-60. doi:10.1016/s0378-1119(02)00871-5Zeldovich, K. B., Berezovsky, I. N., & Shakhnovich, E. I. (2007). Protein and DNA Sequence Determinants of Thermophilic Adaptation. PLoS Computational Biology, 3(1), e5. doi:10.1371/journal.pcbi.0030005Chakravarty, S., & Varadarajan, R. (2000). Elucidation of determinants of protein stability through genome sequence analysis. FEBS Letters, 470(1), 65-69. doi:10.1016/s0014-5793(00)01267-9Cambillau, C., & Claverie, J.-M. (2000). Structural and Genomic Correlates of Hyperthermostability. Journal of Biological Chemistry, 275(42), 32383-32386. doi:10.1074/jbc.c000497200Burra, P. V., Kalmar, L., & Tompa, P. (2010). Reduction in Structural Disorder and Functional Complexity in the Thermal Adaptation of Prokaryotes. PLoS ONE, 5(8), e12069. doi:10.1371/journal.pone.0012069Wang, J., Yang, Y., Cao, Z., Li, Z., Zhao, H., & Zhou, Y. (2013). The Role of Semidisorder in Temperature Adaptation of Bacterial FlgM Proteins. Biophysical Journal, 105(11), 2598-2605. doi:10.1016/j.bpj.2013.10.026Vicedo, E., Schlessinger, A., & Rost, B. (2015). Environmental Pressure May Change the Composition Protein Disorder in Prokaryotes. PLOS ONE, 10(8), e0133990. doi:10.1371/journal.pone.0133990Galea, C. A., High, A. A., Obenauer, J. C., Mishra, A., Park, C.-G., Punta, M., … Kriwacki, R. W. (2009). Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research, 8(1), 211-226. doi:10.1021/pr800308vTsvetkov, P., Myers, N., Moscovitz, O., Sharon, M., Prilusky, J., & Shaul, Y. (2012). Thermo-resistant intrinsically disordered proteins are efficient 20S proteasome substrates. Mol. BioSyst., 8(1), 368-373. doi:10.1039/c1mb05283gGalea, C. A., Nourse, A., Wang, Y., Sivakolundu, S. G., Heller, W. T., & Kriwacki, R. W. (2008). Role of Intrinsic Flexibility in Signal Transduction Mediated by the Cell Cycle Regulator, p27Kip1. Journal of Molecular Biology, 376(3), 827-838. doi:10.1016/j.jmb.2007.12.016Van Noort, V., Bradatsch, B., Arumugam, M., Amlacher, S., Bange, G., Creevey, C., … Bork, P. (2013). Consistent mutational paths predict eukaryotic thermostability. BMC Evolutionary Biology, 13(1), 7. doi:10.1186/1471-2148-13-7Wang, G.-Z., & Lercher, M. J. (2010). Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes. BMC Evolutionary Biology, 10(1), 263. doi:10.1186/1471-2148-10-263Windisch, H. S., Lucassen, M., & Frickenhaus, S. (2012). Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes. BMC Genomics, 13(1), 549. doi:10.1186/1471-2164-13-549Albanèse, V., Yam, A. Y.-W., Baughman, J., Parnot, C., & Frydman, J. (2006). Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells. Cell, 124(1), 75-88. doi:10.1016/j.cell.2005.11.039Berry, J., & Bjorkman, O. (1980). Photosynthetic Response and Adaptation to Temperature in Higher Plants. Annual Review of Plant Physiology, 31(1), 491-543. doi:10.1146/annurev.pp.31.060180.002423Sueoka, N. (1961). CORRELATION BETWEEN BASE COMPOSITION OF DEOXYRIBONUCLEIC ACID AND AMINO ACID COMPOSITION OF PROTEIN. Proceedings of the National Academy of Sciences, 47(8), 1141-1149. doi:10.1073/pnas.47.8.1141Cherry, J. L. (2009). Highly Expressed and Slowly Evolving Proteins Share Compositional Properties with Thermophilic Proteins. Molecular Biology and Evolution, 27(3), 735-741. doi:10.1093/molbev/msp270The amino acid composition is different between the cytoplasmic and extracellular sides in membrane proteins. (1992). FEBS Letters, 303(2-3), 141-146. doi:10.1016/0014-5793(92)80506-cNakashima, H., & Nishikawa, K. (1994). Discrimination of Intracellular and Extracellular Proteins Using Amino Acid Composition and Residue-pair Frequencies. Journal of Molecular Biology, 238(1), 54-61. doi:10.1006/jmbi.1994.1267Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433-3434. doi:10.1093/bioinformatics/bti541Peng, Z., Uversky, V. N., & Kurgan, L. (2016). Genes encoding intrinsic disorder in Eukaryota have high GC content. Intrinsically Disordered Proteins, 4(1), e1262225. doi:10.1080/21690707.2016.1262225Yruela, I., & Contreras-Moreira, B. (2013). Genetic recombination is associated with intrinsic disorder in plant proteomes. BMC Genomics, 14(1), 772. doi:10.1186/1471-2164-14-772Paliy, O., Gargac, S. M., Cheng, Y., Uversky, V. N., & Dunker, A. K. (2008). Protein Disorder Is Positively Correlated with Gene Expression inEscherichia coli. Journal of Proteome Research, 7(6), 2234-2245. doi:10.1021/pr800055rSingh, G. P., & Dash, D. (2008). How expression level influences the disorderness of proteins. Biochemical and Biophysical Research Communications, 371(3), 401-404. doi:10.1016/j.bbrc.2008.04.072Yang, J.-R., Liao, B.-Y., Zhuang, S.-M., & Zhang, J. (2012). Protein misinteraction avoidance causes highly expressed proteins to evolve slowly. Proceedings of the National Academy of Sciences, 109(14), E831-E840. doi:10.1073/pnas.1117408109Hendsch, Z. S., & Tidor, B. (1994). Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Science, 3(2), 211-226. doi:10.1002/pro.5560030206Zhou, X.-X., Wang, Y.-B., Pan, Y.-J., & Li, W.-F. (2007). Differences in amino acids composition and coupling patterns between mesophilic and thermophilic proteins. Amino Acids, 34(1), 25-33. doi:10.1007/s00726-007-0589-xCatanzano, F., Barone, G., Graziano, G., & Capasso, S. (1997). Thermodynamic analysis of the effect of selective monodeamidation at asparagine 67 in ribonuclease A. Protein Science, 6(8), 1682-1693. doi:10.1002/pro.5560060808Charlesworth, B. (2009). Effective population size and patterns of molecular evolution and variation. Nature Reviews Genetics, 10(3), 195-205. doi:10.1038/nrg2526Bolser, D., Staines, D. M., Pritchard, E., & Kersey, P. (2016). Ensembl Plants: Integrating Tools for Visualizing, Mining, and Analyzing Plant Genomics Data. Methods in Molecular Biology, 115-140. doi:10.1007/978-1-4939-3167-5_6Kasprzyk, A. (2003). EnsMart: A Generic System for Fast and Flexible Access to Biological Data. Genome Research, 14(1), 160-169. doi:10.1101/gr.1645104Hooper, C. M., Castleden, I. R., Tanz, S. K., Aryamanesh, N., & Millar, A. H. (2016). SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Research, 45(D1), D1064-D1074. doi:10.1093/nar/gkw1041R: A language and environment for statistical computing. R Foundation for Statistical Computinghttp://www.R-project.org/Kim, S. (2015). ppcor: An R Package for a Fast Calculation to Semi-partial Correlation Coefficients. Communications for Statistical Applications and Methods, 22(6), 665-674. doi:10.5351/csam.2015.22.6.66
Methodology for the detection of land cover changes in time series of daily satellite images. Application to burned area detection
Revista oficial de la Asociación Española de Teledetección[EN] We have developed a methodology for detection of observable phenomena at pixel level over time series of daily satellite images, based on using a Bayesian classifier. This methodology has been applied successfully to detect burned areas in the North American boreal forests using the LTDR dataset. The LTDR dataset represents the longest time series of global daily satellite images with 0.05° (~5 km) of spatial resolution. The proposed methodology has several stages: 1) pre-processing daily images to obtain composite images of n days; 2) building of space of statistical variables or attributes to consider; 3) designing an algorithm, by selecting and filtering the training cases; 4) obtaining probability maps related to the considered thematic classes; 5) post-processing to improve the results obtained by applying multiple techniques (filters, ranges, spatial coherence, etc.). The generated results are analyzed using accuracy metrics derived from the error matrix (commission and omission errors, percentage of estimation) and using scattering plots against reference data (correlation coefficient and slope of the regression line). The quality of the results obtained improves, in terms of spatial and timing accuracy, to other burned area products that use images of higher spatial resolution (500 m and 1 km), but they are only available after year 2000 as MCD45A1 and BA GEOLAND-2: the total burned area estimation for the study region for the years 2001-2011 was 28.56 millions of ha according to reference data and 12.41, 138.43 and 19.41 millions of ha for the MCD45A1, BA GEOLAND-2 and BA-LTDR burned area products, respectively.[ES] Se ha desarrollado una metodología para la detección de cambios de la cubierta vegetal, a nivel de píxel, en se-ries temporales de imágenes de satélites diarias mediante la utilización de un clasificador bayesiano. Dicha metodología ha sido aplicada satisfactoriamente a la detección de áreas quemadas en los bosques boreales de Norte América en el período 1981 a 2011, utilizando el conjunto de datos Long Term Data Record (LTDR) que constituye la serie temporal más larga de imágenes diarias de satélite a escala global, con una resolución espacial de 0,05° (~5 km). La metodología pro-puesta consta de varias etapas: 1) pre-procesamiento de las imágenes diarias y obtención de imágenes compuestas de ndías; 2) construcción del espacio de las variables o atributos a considerar; 3) diseño del algoritmo, mediante la selección y refinamiento de los casos de entrenamiento; 4) obtención de los mapas de probabilidad relacionados con las clases temáticas a considerar; 5) post-procesamiento para mejorar los resultados obtenidos mediante la aplicación de múltiples técnicas (filtros, rangos, coherencia espacial, etc.). Los resultados finales obtenidos son comparados con los datos de referencia mediante métricas de exactitud derivadas de la matriz de error (errores de comisión y omisión, porcentaje de estimación) y de gráficos de dispersión (coeficiente de correlación y pendientes de la recta de regresión, etc.). La calidad de los resultados obtenidos al aplicar esta metodología a las imágenes LTDR para la detección de área quemada en la región boreal de Norte América mejora en términos de exactitud espacio-temporal a la de los otros dos productos de área quemada globales comparados (MCD45A1, BA GEOLAND-2) a pesar de que utilizan imágenes de mayor resolución espa-cial (y sólo disponibles a partir del año 2000): la estimación de área quemada total sobre la región de estudio en el periodo 2001-2011 fue de 28,56 millones de hectáreas según los datos de referencia y de 12,41, 138,43 y de 19,41 millones de hectáreas para los productos MCD45A1, BA GEOLAND-2 y BA-LTDR, respectivamente.Este trabajo está financiado por el Ministerio de Economía y Competitividad de España a través del proyecto CGL2013-48202-C2-2-R. Un especial agradecimiento a las Agencias y Servicios de procesamiento de datos de satélite de NASA
y NOAA, las cuales nos han suministrado la mayor parte de las imágenes empleadas en este trabajo (LANDSAT, MODIS, LAC and LTDR). Finalmente agradecer a los revisores anónimos por sus comentarios constructivos, los cuales fueron
especialmente tenidos en consideración.Moreno-Ruiz, J.; Arbelo, M.; García-Lázaro, J.; Riaño-Arribas, D. (2014). Desarrollo de una metodología para la detección de cambios de la cubierta vegetal en series temporales de imágenes de satélite diarias. Aplicación a la detección de áreas quemadas. Revista de Teledetección. (42):11-28. https://doi.org/10.4995/raet.2014.2280SWORD11284
Strain mapping accuracy improvement using super-resolution techniques
Super-resolution (SR) software-based techniques aim at generating a final image by combining several noisy frames with lower resolution from the same scene. A comparative study on high-resolution high-angle annular dark field images of InAs/GaAs QDs has been carried out in order to evaluate the performance of the SR technique. The obtained SR images present enhanced resolution and higher signal-to-noise (SNR) ratio and sharpness regarding the experimental images. In addition, SR is also applied in the field of strain analysis using digital image processing applications such as geometrical
phase analysis and peak pairs analysis. The precision of the strain mappings can be improved when SR methodologies are applied to experimental images
Critical thermal maxima differ between groups of insect pollinators and their foraging times: Implications for their responses to climate change
Insects perform essential roles within ecosystems and can be vulnerable to climate change because of their small body size and limited capacity to regulate body temperature. Several groups of insects, such as bees and flies, are important pollinators of wild and cultivated plants. However, aspects of their thermal biology remain poorly studied, which limits predictions of their responses to climate change. We assessed the critical thermal maximum (CTMax) of bees and flies visiting flowers in urban and periurban areas in tropical and subtropical regions of the Americas. We also assessed the effect of the foraging time of the day on CTMax. Overall, we found that bees displayed higher CTMax than flies. Flies foraging in the morning and afternoon displayed similar CTMax while bees in the morning displayed a higher CTMax than in the afternoon. The results of this study suggest differences in the vulnerability to climate change between these two major groups of pollinators, with flies being more at risk
- …