1,099 research outputs found

    A scalar hyperbolic equation with GR-type non-linearity

    Full text link
    We study a scalar hyperbolic partial differential equation with non-linear terms similar to those of the equations of general relativity. The equation has a number of non-trivial analytical solutions whose existence rely on a delicate balance between linear and non-linear terms. We formulate two classes of second-order accurate central-difference schemes, CFLN and MOL, for numerical integration of this equation. Solutions produced by the schemes converge to exact solutions at any fixed time tt when numerical resolution is increased. However, in certain cases integration becomes asymptotically unstable when tt is increased and resolution is kept fixed. This behavior is caused by subtle changes in the balance between linear and non-linear terms when the equation is discretized. Changes in the balance occur without violating second-order accuracy of discretization. We thus demonstrate that a second-order accuracy and convergence at finite tt do not guarantee a correct asymptotic behavior and long-term numerical stability. Accuracy and stability of integration are greatly improved by an exponential transformation of the unknown variable.Comment: submitted to Class. Quantum Gra

    The Thermonuclear Explosion Of Chandrasekhar Mass White Dwarfs

    Get PDF
    The flame born in the deep interior of a white dwarf that becomes a Type Ia supernova is subject to several instabilities. We briefly review these instabilities and the corresponding flame acceleration. We discuss the conditions necessary for each of the currently proposed explosion mechanisms and the attendant uncertainties. A grid of critical masses for detonation in the range 10710^7 - 2×1092 \times 10^9 g cm−3^{-3} is calculated and its sensitivity to composition explored. Prompt detonations are physically improbable and appear unlikely on observational grounds. Simple deflagrations require some means of boosting the flame speed beyond what currently exists in the literature. ``Active turbulent combustion'' and multi-point ignition are presented as two plausible ways of doing this. A deflagration that moves at the ``Sharp-Wheeler'' speed, 0.1gefft0.1 g_{\rm eff} t, is calculated in one dimension and shows that a healthy explosion is possible in a simple deflagration if the front moves with the speed of the fastest floating bubbles. The relevance of the transition to the ``distributed burning regime'' is discussed for delayed detonations. No model emerges without difficulties, but detonation in the distributed regime is plausible, will produce intermediate mass elements, and warrants further study.Comment: 28 pages, 4 figures included, uses aaspp4.sty. Submitted to Ap

    Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario

    Full text link
    We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.Comment: 14 pages, 10 figures, accepted to the Astrophysical Journa

    Low Carbon Abundance in Type Ia Supernovae

    Full text link
    We investigate the quantity and composition of unburned material in the outer layers of three normal Type Ia supernovae (SNe Ia): 2000dn, 2002cr and 20 04bw. Pristine matter from a white dwarf progenitor is expected to be a mixture of oxygen and carbon in approximately equal abundance. Using near-infrared (NIR, 0.7-2.5 microns) spectra, we find that oxygen is abundant while carbon is severely depleted with low upper limits in the outer third of the ejected mass. Strong features from the OI line at rest wavelength = 0.7773 microns are observed through a wide range of expansion velocities approx. 9,000 - 18,000 km/s. This large velocity domain corresponds to a physical region of the supernova with a large radial depth. We show that the ionization of C and O will be substantially the same in this region. CI lines in the NIR are expected to be 7-50 times stronger than those from OI but there is only marginal evidence of CI in the spectra and none of CII. We deduce that for these three normal SNe Ia, oxygen is more abundant than carbon by factors of 100 - 1,000. MgII is also detected in a velocity range similar to that of OI. The presence of O and Mg combined with the absence of C indicates that for these SNe Ia, nuclear burning has reached all but the extreme outer layers; any unburned material must have expansion velocities greater than 18,000 km/s. This result favors deflagration to detonation transition (DD) models over pure deflagration models for SNe Ia.Comment: accepted for publication in Ap

    Magnetization control of the nematicity direction and nodal points in a superconducting doped topological insulator

    Full text link
    We study the effects of magnetization on the properties of the doped topological insulator with nematic superconductivity. We found that the direction of the in-plane magnetization fixes the direction of the nematicity in the system. The chiral state is more favorable than the nematic state for large values of out-of-plane magnetization. Overall, the critical temperature of the nematic state is resilient against magnetization. We explore the spectrum of the system with the pinned direction of the nematic order parameter Δy\Delta_{y} in details. Without magnetization, there is a full gap in the spectrum. At strong enough out-of-plane mzm_z or orthogonal in-plane mxm_x magnetization, the spectrum is closed at the nodal points that are split by the magnetization. Flat Majorana surface states connect such split bulk nodal points. Parallel magnetization mym_y lifts nodal points and opens a full gap in the spectrum. We discuss relevant experiments and propose experimental verifications of our theory

    Topological relaxation of entangled flux lattices: Single vs collective line dynamics

    Full text link
    A symbolic language allowing to solve statistical problems for the systems with nonabelian braid-like topology in 2+1 dimensions is developed. The approach is based on the similarity between growing braid and "heap of colored pieces". As an application, the problem of a vortex glass transition in high-T_c superconductors is re-examined on microscopic levelComment: 4 pages (revtex), 4 figure

    Properties of four numerical schemes applied to a scalar nonlinear scalar wave equation with a GR-type nonlinearity

    Full text link
    We study stability, dispersion and dissipation properties of four numerical schemes (Iterative Crank-Nicolson, 3'rd and 4'th order Runge-Kutta and Courant-Fredrichs-Levy Non-linear). By use of a Von Neumann analysis we study the schemes applied to a scalar linear wave equation as well as a scalar non-linear wave equation with a type of non-linearity present in GR-equations. Numerical testing is done to verify analytic results. We find that the method of lines (MOL) schemes are the most dispersive and dissipative schemes. The Courant-Fredrichs-Levy Non-linear (CFLN) scheme is most accurate and least dispersive and dissipative, but the absence of dissipation at Nyquist frequency, if fact, puts it at a disadvantage in numerical simulation. Overall, the 4'th order Runge-Kutta scheme, which has the least amount of dissipation among the MOL schemes, seems to be the most suitable compromise between the overall accuracy and damping at short wavelengths.Comment: 9 pages, 8 Postscript figure

    Nematic Ordering of Rigid Rods in a Gravitational Field

    Full text link
    The isotropic-to-nematic transition in an athermal solution of long rigid rods subject to a gravitational (or centrifugal) field is theoretically considered in the Onsager approximation. The new feature emerging in the presence of gravity is a concentration gradient which coupled with the nematic ordering. For rodlike molecules this effect becomes noticeable at centrifugal acceleration g ~ 10^3--10^4 m/s^2, while for biological rodlike objects, such as tobacco mosaic virus, TMV, the effect is important even for normal gravitational acceleration conditions. Rods are concentrated near the bottom of the vessel which sometimes leads to gravity induced nematic ordering. The concentration range corresponding to phase separation increases with increasing g. In the region of phase separation the local rod concentration, as well as the order parameter, follow a step function with height.Comment: Full article http://prola.aps.org/abstract/PRE/v60/i3/p2973_

    The Luminous and Carbon-Rich Supernova 2006gz: A Double Degenerate Merger?

    Full text link
    Spectra and light curves of SN 2006gz show the strongest signature of unburned carbon and one of the slowest fading light curves ever seen in a type Ia event (Delta m_15 = 0.69 +/- 0.04). The early-time Si II velocity is low, implying it was slowed by an envelope of unburned material. Our best estimate of the luminosity implies M_V = -19.74 and the production of ~ 1.2 M_sun of 56Ni. This suggests a super-Chandrasekhar mass progenitor. A double degenerate merger is consistent with these observations.Comment: Accepted for publication in ApJL (5 pages, 4 figures). UBVr'i' light curves, UVOIR light curves, and spectra available at http://www.cfa.harvard.edu/supernova/SN2006g
    • 

    corecore