135 research outputs found

    Josephson Flux Flow Oscillator: the Microscopic Tunneling Approach

    Get PDF
    We elaborate a theoretical description of large Josephson junctions which is based on the Werthamer's microscopic tunneling theory. The model naturally incorporates coupling of electromagnetic radiation to the tunnel currents and, therefore, is particularly suitable for description of the self-coupling effect in Josephson junction. In our numerical calculations we treat the arising integro-differential equation, which describes temporal evolution of the superconducting phase difference coupled to the electromagnetic field, by the Odintsov-Semenov-Zorin algorithm. This allows us to avoid evaluation of the time integrals at each time step while taking into account all the memory effects. To validate the obtained microscopic model of large Josephson junction we focus our attention on the Josephson flux flow oscillator. The proposed microscopic model of flux flow oscillator does not involve the phenomenological damping parameter, rather, the damping is taken into account naturally in the tunnel current amplitudes calculated at a given temperature. The theoretically calculated current-voltage characteristics is compared to our experimental results obtained for a set of fabricated flux flow oscillators of different lengths. Our theoretical calculation agrees well with the obtained experimental results, and, to our knowledge, is the first where theoretical description of Josephson flux flow oscillator is brought beyond the perturbed sine-Gordon equation.Comment: 13 pages, 2 figure

    Is a single photon's wave front observable?

    Get PDF
    The ultimate goal and the theoretical limit of weak signal detection is the ability to detect a single photon against a noisy background. [...] In this paper we show, that a combination of a quantum metamaterial (QMM)-based sensor matrix and quantum non-demolition (QND) readout of its quantum state allows, in principle, to detect a single photon in several points, i.e., to observe its wave front. Actually, there are a few possible ways of doing this, with at least one within the reach of current experimental techniques for the microwave range. The ability to resolve the quantum-limited signal from a remote source against a much stronger local noise would bring significant advantages to such diverse fields of activity as, e.g., microwave astronomy and missile defence. The key components of the proposed method are 1) the entangling interaction of the incoming photon with the QMM sensor array, which produces the spatially correlated quantum state of the latter, and 2) the QND readout of the collective observable (e.g., total magnetic moment), which characterizes this quantum state. The effects of local noise (e.g., fluctuations affecting the elements of the matrix) will be suppressed relative to the signal from the spatially coherent field of (even) a single photon.Comment: 13 pages, 4 figure

    Excitonic effects in time-dependent density functional theory from zeros of the density response

    Full text link
    We show that the analytic structure of the dynamical xc kernels of semiconductors and insulators can be sensed in terms of its poles which mark physically relevant frequencies of the system where the counter-phase motion of discrete collective excitations occurs: if excited, the collective modes counterbalance each other, making the system to exhibit none at all or extremely weak density response. This property can be employed to construct simple and practically relevant approximations of the dynamical xc kernel for time-dependent density functional theory (TDDFT). Such kernels have simple analytic structure, are able to reproduce dominant excitonic features of the absorption spectra of monolayer semiconductors and bulk solids, and promise high potential for future uses in efficient real-time calculations with TDDFT.Comment: 10 pages, 4 figure

    Perturbation theory for localized solutions of sine-Gordon equation: decay of a breather and pinning by microresistor

    Full text link
    We develop a perturbation theory that describes bound states of solitons localized in a confined area. External forces and influence of inhomogeneities are taken into account as perturbations to exact solutions of the sine-Gordon equation. We have investigated two special cases of fluxon trapped by a microresistor and decay of a breather under dissipation. Also, we have carried out numerical simulations with dissipative sine-Gordon equation and made comparison with the McLaughlin-Scott theory. Significant distinction between the McLaughlin-Scott calculation for a breather decay and our numerical result indicates that the history dependence of the breather evolution can not be neglected even for small damping parameter
    • …
    corecore