8,402 research outputs found

    Single-copy entanglement in a gapped quantum spin chain

    Get PDF
    The single-copy entanglement of a given many-body system is defined [J. Eisert and M. Cramer, Phys. Rev. A. 72, 042112 (2005)] as the maximal entanglement deterministically distillable from a bipartition of a single specimen of that system. For critical (gapless) spin chains, it was recently shown that this is exactly half the von Neumann entropy [R. Orus, J. I. Latorre, J. Eisert, and M. Cramer, Phys. Rev. A 73, 060303(R) (2006)], itself defined as the entanglement distillable in the asymptotic limit: i.e. given an infinite number of copies of the system. It is an open question as to what the equivalent behaviour for gapped systems is. In this paper, I show that for the paradigmatic spin-S Affleck-Kennedy-Lieb-Tasaki chain (the archetypal gapped chain), the single-copy entanglement is equal to the von Neumann entropy: i.e. all the entanglement present may be distilled from a single specimen.Comment: Typos corrected; accepted for publication in Phys. Rev. Lett.; comments welcom

    Electrically detected magnetic resonance of carbon dangling bonds at the Si-face 4H-SiC/SiO2_2 interface

    Get PDF
    SiC based metal-oxide-semiconductor field-effect transistors (MOSFETs) have gained a significant importance in power electronics applications. However, electrically active defects at the SiC/SiO2_2 interface degrade the ideal behavior of the devices. The relevant microscopic defects can be identified by electron paramagnetic resonance (EPR) or electrically detected magnetic resonance (EDMR). This helps to decide which changes to the fabrication process will likely lead to further increases of device performance and reliability. EDMR measurements have shown very similar dominant hyperfine (HF) spectra in differently processed MOSFETs although some discrepancies were observed in the measured gg-factors. Here, the HF spectra measured of different SiC MOSFETs are compared and it is argued that the same dominant defect is present in all devices. A comparison of the data with simulated spectra of the C dangling bond (PbC_\textrm{bC}) center and the silicon vacancy (VSi_\textrm{Si}) demonstrates that the PbC_\textrm{bC} center is a more suitable candidate to explain the observed HF spectra.Comment: Accepted for publication in the Journal of Applied Physic

    Unified Framework for Correlations in Terms of Local Quantum Observables

    Full text link
    We provide a unified framework for nonsignalling quantum and classical multipartite correlations, allowing all to be written as the trace of some local (quantum) measurements multiplied by an operator. The properties of this operator define the corresponding set of correlations.We then show that if the theory is such that all local quantum measurements are possible, one obtains the correlations corresponding to the extension of Gleason's Theorem to multipartite systems. Such correlations coincide with the quantum ones for one and two parties, but we prove the existence of a gap for three or more parties.Comment: 4 pages, final versio

    PRESSURE BALANCE OF A MULTIPLE-LOOP CHEMICAL REACTOR

    Get PDF
    For a chemical looping (CL) process it is important to determine the optimum reactor configuration that would offer good pressure balance to ensure smooth transfer of the solids between the reactor loops as well as satisfying the oxygen carrier and heat requirements. A variation of the CL process for production of enriched hydrogen stream is investigated which adopts multiple reactor loops. A pressure balance model is developed and a methodology is proposed to find a feasible reactor configuration at an industrial scale production of hydrogen

    Decoherence-based exploration of d-dimensional one-way quantum computation

    Get PDF
    We study the effects of amplitude and phase damping decoherence in d-dimensional one-way quantum computation (QC). Our investigation shows how information transfer and entangling gate simulations are affected for d>=2. To understand motivations for extending the one-way model to higher dimensions, we describe how d-dimensional qudit cluster states deteriorate under environmental noise. In order to protect quantum information from the environment we consider the encoding of logical qubits into physical qudits and compare entangled pairs of linear qubit-cluster states with single qudit clusters of equal length and total dimension. Our study shows a significant reduction in the performance of one-way QC for d>2 in the presence of Markovian type decoherence models.Comment: 8 pages, 11 figures, RevTeX

    Arrays of Cooper Pair Boxes Coupled to a Superconducting Reservoir: `Superradiance' and `Revival.'

    Full text link
    We consider an array of Cooper Pair Boxes, each of which is coupled to a superconducting reservoir by a capacitive tunnel junction. We discuss two effects that probe not just the quantum nature of the islands, but also of the superconducting reservoir coupled to them. These are analogues to the well-known quantum optical effects `superradiance,' and `revival.' When revival is extended to multiple systems, we find that `entanglement revival' can also be observed. In order to study the above effects, we utilise a highly simplified model for these systems in which all the single-electron energy eigenvalues are set to be the same (the strong coupling limit), as are the charging energies of the Cooper Pair Boxes, allowing the whole system to be represented by two large coupled quantum spins. Although this simplification is drastic, the model retains the main features necessary to capture the phenomena of interest. Given the progress in superconducting box experiments over recent years, it is possible that experiments to investigate both of these interesting quantum coherent phenomena could be performed in the forseeable future.Comment: 23 pages, 5 figures Clarifications made as recommended by refere

    A feasibility study of team-based primary care for chronic disease management training in rural Australia

    Get PDF
    Increasing rates of chronic disease management (CDM) are projected to contribute to significant effective shortfalls in the primary care workforce in Australia.1 Additionally, rural Australia carries a higher burden of chronic illness2 and has existing medical workforce shortages.3 Therefore, it is imperative that rural primary care maximises the efficiency of the CDM it provides
    • …
    corecore