32 research outputs found

    Block copolymer based novel magnetic mixed matrix membranes-magnetic modulation of water permeation by irreversible structural changes

    Get PDF
    This contribution focuses on understanding the effect of magnetic field intensity on the performance of novel hydrophilic and hydrophobic mixed matrix membranes (MMMs). The hydrophilic MMMs were made up of polymeric nanoparticles (PNPs) that were synthesized through polymerization-induced self-assembly (PISA) and iron oxide nanoparticles prepared in presence of poly (methacrylic acid)-b-poly quaternized (2-dimethylamino)ethyl methacrylate. The hydrophobic MMMs were prepared by the addition of iron oxide nanoparticles with different surface properties to a linear poly (methacrylic acid)-b-poly (methylmethacrylate) diblock copolymer dissolved in tetrahydrofuran (THF). Three different types of hydrophilic membranes were prepared with polymeric nanoparticles of different morphologies (spherical, vermicular and vesicular). In case of the hydrophobic membranes, six different membranes containing different iron oxide core coated with different stabilizers such as poly (methacrylic acid), quaternized poly(2-dimethylamino)ethyl methacrylate and meso-2, 3-dimercaptosuccinic acid were prepared. An external magnetic field with intensity values up to 1.15 T was used for the permeation studies and the results were compared with those obtained in the absence of magnetic field. The collected data indicate an increase in the water flux of up to 16% and 29% under the magnetic field for hydrophobic and hydrophilic membranes, respectively. The STEM analyses suggest that the magnetic nanoparticles move within the membrane structure during the application of the magnetic field. This displacement/rearrangement causes constant changes in the membrane structure (structure of the active layer) and consequently on the membrane permeability. These results suggest that the application of the magnetic field could be used as a pretreatment step to obtain high flux membranes

    Positively charged and bipolar layered poly(ether imide) nanofiltration membranes for water softening applications

    No full text
    Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio

    Bicompartmentalized polymer particles by tandem ROMP and ATRP in miniemulsion

    No full text
    This Study describes an original approach to prepare biphasic particles by simultaneous ring-opening metathesis polymerization (ROMP) of norbornene and atom-transfer radical polymerization (ATRP) of methyl methacrylate under miniemulsion conditions. A single water-soluble ruthenium macrocatalyst was used to initiate ROMP and mediate ATRP. All situations led to high conversions, and well-distributed particles containing two incompatible homopolymers grown under controlled conditions could indeed be prepared

    Impact of RGD Nanopatterns Grafted onto Titanium on Osteoblastic Cell Adhesion

    No full text
    This work reports on the synthesis of titanium bone implants functionalized with nanoparticles (NPs) containing Arg-Gly-Asp-Cys peptide (RGDC) and shows the adhesion behavior of cells seeded on these materials. RGDC peptides were first: conjugated to a norbornenyl-poly(ethylene oxide) macromonomer (Nb-PEO). Then, functional NPs with a size of similar to 300 nm and constituted of polynorbornene core surrounded by poly(ethylene oxide) shell were prepared by ring-opening metathesis polymerization in dispersed medium. The grafting density of these NPs on the titanium surface is up to 2 NPs.mu m(-2) (80 pmol of RGDC per cm(-2) of NP surface). Cell adhesion was evaluated using preosteoblast cells (MC3T3-E1). Results of cells cultured for 24 h showed that materials grafted with NPs functionalized with RGDC peptides enhance specific cell adhesion and can create filopodia-like among NP sites by stressing the cells
    corecore