24 research outputs found
Long-term durability of alumina ceramic heads in THA
Background: The optimal type of bearing for hip arthroplasty remains a matter of debate. Ceramic-on-polyethylene (CoP) bearings are frequently used in younger and more active patients to reduce wear and increase biocompatibility compared to Metal-on-Polyethylene (MoP) bearings. However, in comparison to metal heads, the fracture risk of ceramic heads is higher. In addition, ceramic head fractures pose a serious complication which often necessitates major revision surgery. To date, there are no long-term data (>20 years of follow-up) reporting fracture rates of the ceramic femoral heads in CoP bearings. The purpose of this research was to investigate long-term CoP fracture rate. Methods: We evaluated the clinical and radiographic results of 348 cementless THAs treated with 2nd generation Biolox® Al2O3 Ceramic-on-Polyethylene (CoP) bearings consecutively implanted between January 1985 and December 1989. The mean age at implantation was 57 years. The patients were followed for a minimum of 20 years. At the final 111 had died, and 5 were lost to follow-up. The cumulative incidence of ceramic head fractures in the long-term was estimated using a competing risk analysis. Results: The cumulative incidence of ceramic head fracture after 22-years was estimated with a competing risk analysis at 0.29% after 22-years (SE = 2.09%; 95% - CI: 0.03-1.5%). The radiographic analysis revealed no impending failures at final follow-up. Discussion/Conclusion: The fracture rate of second-generation ceramic heads using a CoP articulation remains very low into the third decade after cementless THA
A Cortical Attractor Network with Martinotti Cells Driven by Facilitating Synapses
The population of pyramidal cells significantly outnumbers the inhibitory interneurons in the neocortex, while at the same time the diversity of interneuron types is much more pronounced. One acknowledged key role of inhibition is to control the rate and patterning of pyramidal cell firing via negative feedback, but most likely the diversity of inhibitory pathways is matched by a corresponding diversity of functional roles. An important distinguishing feature of cortical interneurons is the variability of the short-term plasticity properties of synapses received from pyramidal cells. The Martinotti cell type has recently come under scrutiny due to the distinctly facilitating nature of the synapses they receive from pyramidal cells. This distinguishes these neurons from basket cells and other inhibitory interneurons typically targeted by depressing synapses. A key aspect of the work reported here has been to pinpoint the role of this variability. We first set out to reproduce quantitatively based on in vitro data the di-synaptic inhibitory microcircuit connecting two pyramidal cells via one or a few Martinotti cells. In a second step, we embedded this microcircuit in a previously developed attractor memory network model of neocortical layers 2/3. This model network demonstrated that basket cells with their characteristic depressing synapses are the first to discharge when the network enters an attractor state and that Martinotti cells respond with a delay, thereby shifting the excitation-inhibition balance and acting to terminate the attractor state. A parameter sensitivity analysis suggested that Martinotti cells might, in fact, play a dominant role in setting the attractor dwell time and thus cortical speed of processing, with cellular adaptation and synaptic depression having a less prominent role than previously thought