3 research outputs found

    Microstructural Characterization and Mechanical Behavior of Copper Matrix Composites Reinforced by B4C and Sea Shell Powder

    Get PDF
    This paper investigates the microstructural and mechanical properties of copper metal matrix composites reinforced with B4C and crushed sea shell particles (fabricated using powder metallurgy). In powder form, copper is widely used in structural applications. Copper also possesses very good electrical and thermal conductivity, ductility, and corrosion resistance. B4C is the third-hardest-known material that also possesses excellent toughness and wear resistance. Sea shells are readily available along coastal areas. Therefore, an attempt has been made in this work to investigate the feasibility of its utilization in powder metallurgy. Two batches of samples were prepared. In the first batch, the percentage of boron carbide and copper powder were varied, and seashell powder was not included. In the second batch, the percentages of B4C, copper, and sea shell powder were varied in order to assess the change effected by the sea shell material. The sintered samples of both batches were subjected to microstructural characterization to ascertain the homogeneous distribution of the reinforcements. The microhardness and wear resistance of all of the fabricated samples were assessed. The results confirmed that the inclusion of 2% sea shell powder (by weight) with 10% boron carbide improved the wear resistance and hardness of the composite

    Microstructural Characterization and Mechanical Behavior of Copper Matrix Composites Reinforced by B4C and Sea Shell Powder

    No full text
    This paper investigates the microstructural and mechanical properties of copper metal matrix composites reinforced with B4C and crushed sea shell particles (fabricated using powder metallurgy). In powder form, copper is widely used in structural applications. Copper also possesses very good electrical and thermal conductivity, ductility, and corrosion resistance. B4C is the third-hardest-known material that also possesses excellent toughness and wear resistance. Sea shells are readily available along coastal areas. Therefore, an attempt has been made in this work to investigate the feasibility of its utilization in powder metallurgy. Two batches of samples were prepared. In the first batch, the percentage of boron carbide and copper powder were varied, and seashell powder was not included. In the second batch, the percentages of B4C, copper, and sea shell powder were varied in order to assess the change effected by the sea shell material. The sintered samples of both batches were subjected to microstructural characterization to ascertain the homogeneous distribution of the reinforcements. The microhardness and wear resistance of all of the fabricated samples were assessed. The results confirmed that the inclusion of 2% sea shell powder (by weight) with 10% boron carbide improved the wear resistance and hardness of the composite

    Investigation of Static, Modal and Harmonic vibration analyses of Single Row SKF6205 Deep Groove Ball Bearing for thermal applications

    No full text
    It is the necessary to predict the endurance capability of the mechanical element with its increased application and complexity. The present research work estimates the stress variation and displacement characteristics using finite element analyses of Single Row SKF6205 Deep Groove Ball Bearing under radial and axial loadings. The vibration analyses are evaluated in three aspects; static, modal, and harmonic analysis. The simulations show the variation of stress levels of the bearing in different loads. These results are used to predict the fatigue life, wear rate, and productivity of the ball bearing at various stochastic conditions
    corecore