28 research outputs found

    Prostate cancer morbidity in the Mari El Republic: A retrospective observational study

    Get PDF
    Background. Prostate cancer maintains a relatively high standardized uptake value and share of patients followed up for 5 or more years. Accordingly, distant outcomes in these patients appear to be influenced by factors other than the underlying disease.Objective. To analyze the morbidity in prostate cancer patients with additional malignancies potentially linked with the decrease in the survival rate in the Mari El Republic.Methods. The present study involved 1434 prostate cancer patients firstly enrolled in the period from 2012 to 2021. A group of patients in this sample was identified with additional malignancies (other than prostate cancer) diagnosed within the period from 6 months prior to prostate cancer diagnosis to the end of 2021. Comparison of the incidence of malignancies among prostate cancer patients and the general population was performed via a 2 Γ— 2 crosstab analysis by calculating the relative risk and its 95% confidence interval. The difference was considered significant when 95% confidence interval did not include 1. In addition, chi-square values and corresponding p-values were calculated. Statistical analyses were performed using SPSS 13.0 (SPSS Inc., USA) and Microsoft Excel 2007 (Microsoft Corporation, USA).Results. 31 (32.29%) additional malignancies were identified (prostate cancer was diagnosed within 6 months before prostate cancer diagnosis and up to 6 months thereafter), 7 additional malignancies (7.29%) were registered 6 months to 1 year after prostate cancer diagnosis, and 61 additional malignancies (63.54%) during the later period. The most common primary malignancies among all patients included: bladder cancer (relative risk = 15.23 [95% confidence interval: 10.42–22.26]), nonmelanoma skin cancer (relative risk = 3.77 [2.34–6.07]), colorectal cancer (relative risk = 2.10 [1.24–3.54]), gastric cancer (relative risk = 2.01 [1.08–3.73]), and kidney cancer (relative risk = 4.69 [2.51–8.75]).Conclusion. Within 7.1 years (median) of follow-up, additional malignancies develop in 6.70% of prostate cancer patients. These patients reveal the higher risk than the population average value, thereby constituting a risk group

    НовыС возмоТности Π»ΡƒΡ‡Π΅Π²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ Π·Π° Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ°Ρ…

    Get PDF
    Objective: comparative study of the possibilities of radiation methods in control of bone regeneration in fractures.Materials and methods. A study of bone calluse formation was conducted in 116 patients with broken tubular bones of the upper and lower limbs from the first day of the fracture to the complete consolidation of the fractures. In X-rays and CT determined the mineral density of bone calluses, with ultrasonic elastography shear wave and compression elastography determined the rigidity of bone calluses in kPa.Results. X-ray bone corn was determined at the end of the second – the beginning of the third stage of bone calluse formation. On CT bone corn density (in the HU), its structure and the condition of bone breaks were determined in some patients in all stages of bone regenerate formation. In ultrasound examination in the multiparametric mode studied the rigidity, structure and vascularization of bone calluses, the correct comparison of bone breaks from the first day of the fracture to their complete fusion.Conclusions. Ultrasonic studies in multiparametric mode can be used to control bone regeneration in fractures. Ultrasonic elastography shear wave, in determining the rigidity of bone calluse, in sensitivity and specificity exceeds the indicators of ultrasonic compression elastography at all stages of bone regenerate formation.ЦСль исслСдования: ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ ΠΈΠ·ΡƒΡ‡Π΅Π½ΠΈΠ΅ возмоТностСй Π»ΡƒΡ‡Π΅Π²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π² ΠΊΠΎΠ½Ρ‚Ρ€ΠΎΠ»Π΅ Π·Π° Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ°Ρ….ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ исслСдованиС формирования костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ Ρƒ 116 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ°ΠΌΠΈ Ρ‚Ρ€ΡƒΠ±Ρ‡Π°Ρ‚Ρ‹Ρ… костСй Π²Π΅Ρ€Ρ…Π½ΠΈΡ… ΠΈ Π½ΠΈΠΆΠ½ΠΈΡ… конСчностСй с ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ дня ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ° Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠΉ консолидации ΠΎΡ‚Π»ΠΎΠΌΠΊΠΎΠ². ΠŸΡ€ΠΈ Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ ΠΈ КВ опрСдСляли ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΡƒΡŽ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ, ΠΏΡ€ΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ эластографии сдвиговой Π²ΠΎΠ»Π½ΠΎΠΉ ΠΈ компрСссионной эластографии – ΠΆΠ΅ΡΡ‚ΠΊΠΎΡΡ‚ΡŒ костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ Π² килопаскалях.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. РСнтгСнологичСски костная мозоль ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΠ»Π°ΡΡŒ Π² ΠΊΠΎΠ½Ρ†Π΅ Π²Ρ‚ΠΎΡ€ΠΎΠΉ – Π½Π°Ρ‡Π°Π»Π΅ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ стадии формирования костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ. На ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ Ρ‚ΠΎΠΌΠΎΠ³Ρ€Π°ΠΌΠΌΠ΅ ΠΏΠ»ΠΎΡ‚Π½ΠΎΡΡ‚ΡŒ костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ (Π² Π΅Π΄ΠΈΠ½ΠΈΡ†Π°Ρ… Π₯аунсфилда), Π΅Π΅ структуру ΠΈ состояниС костных ΠΎΡ‚Π»ΠΎΠΌΠΊΠΎΠ² опрСдСляли Ρƒ части ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π²ΠΎ всСх стадиях формирования костного Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚Π°. ΠŸΡ€ΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΌ исслСдовании Π² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΈΠ·ΡƒΡ‡Π°Π»ΠΈ ΠΆΠ΅ΡΡ‚ΠΊΠΎΡΡ‚ΡŒ, структуру ΠΈ Π²Π°ΡΠΊΡƒΠ»ΡΡ€ΠΈΠ·Π°Ρ†ΠΈΡŽ костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ, ΠΏΡ€Π°Π²ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ сопоставлСния костных ΠΎΡ‚Π»ΠΎΠΌΠΊΠΎΠ² с ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ дня ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ° ΠΈ Π΄ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΈΡ… сращСния.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π£Π»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Π΅ исслСдования Π² ΠΌΡƒΠ»ΡŒΡ‚ΠΈΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π΅ΡΠΊΠΎΠΌ Ρ€Π΅ΠΆΠΈΠΌΠ΅ ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½ΠΈΡ‚ΡŒ для контроля Π·Π° Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠ΅ΠΉ костной Ρ‚ΠΊΠ°Π½ΠΈ ΠΏΡ€ΠΈ ΠΏΠ΅Ρ€Π΅Π»ΠΎΠΌΠ°Ρ…. Π£Π»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Π°Ρ эластография сдвиговой Π²ΠΎΠ»Π½ΠΎΠΉ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ ТСсткости костной ΠΌΠΎΠ·ΠΎΠ»ΠΈ ΠΏΠΎ Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΠΈ ΠΈ спСцифичности ΠΏΡ€Π΅Π²Ρ‹ΡˆΠ°Π΅Ρ‚ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²ΠΎΠΉ компрСссионной эластографии Π½Π° всСх стадиях формирования костного Ρ€Π΅Π³Π΅Π½Π΅Ρ€Π°Ρ‚Π°

    Π‘Ρ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Π°Π½Π°Π»ΠΈΠ· диагностичСской цСнности систСм ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° ΠΌΠ°ΠΌΠΌΠΎΠ³Ρ€Π°ΠΌΠΌ I ΠΈ II ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΉ

    Get PDF
    Aim: to compare the diagnostic efficacy of generationΒ I and II computer aided detection (CAD) systems for mammographyΒ of our own design using the large set of unselect ed mammography images obtained in a routine clinical practice settings.Β Material and methods. Both CADs were tested on theΒ set of 1532 mammography images of 356 women with confirmedΒ breast cancer (BC). We assessed their value in theΒ detection of suspicious areas with various characteristicsΒ located on the different density background. Size of BCΒ lesions varied from 4 to 35 mm (mean – 13,4 Β± 6,3 mm).Β We excluded BC representing only with microcalcificationΒ clusters from this analysis, because this task is solved usingΒ the separate universal module compatible with both CADs.Results. For I and II generation CADs we obtained theΒ following results: detection of small nodular BCs (≀10 mm) – 41 of 52 (78.85%) and 48 of 52 (92.31%; p > 0.05), respectively;Β detection of BCs visible as asymmetric areas – 18 ofΒ 18 (100%) and 13 of 18 (72.2%; p > 0.05), respectively;Β detection of only partially visible masses – 15 of 18 (83.3%)Β and 17 of 18 (94.4%; p > 0.05); detection of lesions poorlyΒ visible or invisible on standard mammography imagesΒ due to the high density background (C-D types according toΒ the ACR 2013 classification) – 9 of 16 (56.3%) and 7 of 16Β (70.0%; p = 0.046). Total detection rate was 88.76% (316 ofΒ 356 cases) – for CAD I and 90.73% (323 of 356 cases;Β Ρ€ > 0.05) – for CAD II. Mean false positive marks rate wasΒ 1.8 and 1.3 per image, respectively, – for ACR А-Π’ imagesΒ and 2.6 and 1.8 per image, respectively – for ACR C-DΒ images (p < 0.05).Conclusion. Generally the diagnostic value of CAD II isΒ not inferior that of CAD I in all analyzed situations, except theΒ poorly visible or invisible lesions on the dense breast background.Β Moreover, CAD II is probably superior CAD I in theΒ detection of spiculated small masses. The rate of falseΒ positive marks was significantly higher for CAD I.ЦСль исслСдования: ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΎΡ†Π΅Π½ΠΊΠ° эффСктивности Ρ€Π°Π±ΠΎΡ‚Ρ‹ систСм ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° (CAD)Β I ΠΈ II ΠΏΠΎΠΊΠΎΠ»Π΅Π½ΠΈΠΉ собствСнной Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ Π½Π° ΠΎΠ±ΡˆΠΈΡ€Π½ΠΎΠΉΒ Π±Π°Π·Π΅ Π½Π΅ΠΎΡ‚ΠΎΠ±Ρ€Π°Π½Π½Ρ‹Ρ… маммографичСских ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ,Β ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Π² условиях Ρ€ΡƒΡ‚ΠΈΠ½Π½ΠΎΠΉ клиничСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠΈ.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ОбС систСмы Π±Ρ‹Π»ΠΈ протСстированы Π½Π° Π½Π°Π±ΠΎΡ€Π΅ ΠΈΠ· 1532 ΠΌΠ°ΠΌΠΌΠΎΠ³Ρ€Π°ΠΌΠΌ 356 пациСнток с Π²Π΅Ρ€ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹ΠΌ Ρ€Π°ΠΊΠΎΠΌ ΠΌΠΎΠ»ΠΎΡ‡Π½ΠΎΠΉ ΠΆΠ΅Π»Π΅Π·Ρ‹ (Π ΠœΠ–)Β Π½Π° ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠΈΠ²Π°Ρ‚ΡŒ ΠΏΠΎΠ΄ΠΎΠ·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ области с Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹ΠΌΠΈ характСристиками Π½Π° ΠΌΠ°ΠΌΠΌΠΎΠ³Ρ€Π°ΠΌΠΌΠ°Ρ… Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠΉ стСпСни плотности. Π Π°Π·ΠΌΠ΅Ρ€ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΠΎΠ²Π°Π²ΡˆΠΈΡ… Π ΠœΠ–, Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π» ΠΎΡ‚ 4 Π΄ΠΎ 35 ΠΌΠΌ (срСдний – 13,4 Β± 6,3 ΠΌΠΌ). Π˜ΡΠΊΠ»ΡŽΡ‡Π°Π»ΠΈ случаи Π ΠœΠ–, ΠΏΡ€ΠΎΡΠ²Π»ΡΠ²ΡˆΠΈΠ΅ΡΡ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Π²ΠΈΠ΄Π΅ скоплСний ΠΌΠΈΠΊΡ€ΠΎΠΊΠ°Π»ΡŒΡ†ΠΈΠ½Π°Ρ‚ΠΎΠ²,Β ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ данная Π·Π°Π΄Π°Ρ‡Π° Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ с ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌΒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π±Π»ΠΎΠΊΠ°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠŸΡ€ΠΈ использовании систСм I ΠΈ II поколСния Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ соотвСтствСнно: ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΌΠ°Π»Ρ‹Ρ… Ρ€Π°ΠΊΠΎΠ² (Π΄ΠΎ 10 ΠΌΠΌ) с очаговым ростом – 41 (78,85%) ΠΈΠ· 52 ΠΈ 48 (92,31%; p > 0,05) ΠΈΠ· 52;Β ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ Π ΠœΠ–, ΠΏΡ€ΠΎΡΠ²Π»ΡΡŽΡ‰Π΅Π³ΠΎΡΡ Π² Π²ΠΈΠ΄Π΅ асиммСтрии, – 18 (100%) ΠΈΠ· 18 ΠΈ 13 (72,2%; p > 0,05) ΠΈΠ· 18; ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ частично срСзанных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ – 15 (83,3%)Β ΠΈΠ· 18 ΠΈ 17 (94,4%; p > 0,05) ΠΈΠ· 18; ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠ»ΠΎΡ…ΠΎ Π²ΠΈΠ΄ΠΈΠΌΡ‹Ρ… ΠΈΠ»ΠΈ Π²ΠΎΠΎΠ±Ρ‰Π΅ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΡ‹Ρ… Π½Π° стандартных ΠΌΠ°ΠΌΠΌΠΎΠ³Ρ€Π°ΠΌΠΌΠ°Ρ… Π²Π²ΠΈΠ΄Ρƒ ΠΏΠ»ΠΎΡ‚Π½ΠΎΠΉ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΡ‹ ΠœΠ–Β (Ρ‚ΠΈΠΏΡ‹ C-D согласно ACR 2013), – 9 (56,3%) ΠΈΠ· 16 ΠΈΒ 7 (70,0%; p = 0,046) ΠΈΠ· 16. ΠžΠ±Ρ‰Π°Ρ частота ΠΎΠ±Π½Π°Ρ€ΡƒΠΆΠ΅Π½ΠΈΡΒ ΠΏΠΎΠ΄ΠΎΠ·Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ составила 88,76% (316 ΠΈΠ·Β 356 случаСв) – для CAD I ΠΈ 90,73% (323 ΠΈΠ· 356 случаСв;Β Ρ€>0,05) – для CAD II. Частота Π»ΠΎΠΆΠ½ΠΎΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ…Β ΠΌΠ΅Ρ‚ΠΎΠΊ составила Π² срСднСм 1,8 ΠΈ 1,3 соотвСтствСнно Π½Π°Β ΠΌΠ°ΠΌΠΌΠΎΠ³Ρ€Π°ΠΌΠΌΡƒ ΠΏΡ€ΠΈ Ρ‚ΠΈΠΏΠ°Ρ… ACR А–В ΠΈ 2,6 ΠΈ 1,8 соотвСтствСнно – ΠΏΡ€ΠΈ Ρ‚ΠΈΠΏΠ°Ρ… ACR C–D (p < 0,05).Π’Ρ‹Π²ΠΎΠ΄Ρ‹. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ CAD II сравнима с Ρ‚Π°ΠΊΠΎΠ²ΠΎΠΉΒ CAD I Π²ΠΎ всСх ситуациях, Π·Π° ΠΈΡΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅ΠΌ выявлСния ΠΏΠ»ΠΎΡ…ΠΎΒ Π²ΠΈΠ΄ΠΈΠΌΡ‹Ρ… ΠΈ Π½Π΅Π²ΠΈΠ΄ΠΈΠΌΡ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ вслСдствиС ΠΏΠ»ΠΎΡ‚Π½ΠΎΠΉΒ ΠΏΠ°Ρ€Π΅Π½Ρ…ΠΈΠΌΡ‹ ΠœΠ–. ΠšΡ€ΠΎΠΌΠ΅ Ρ‚ΠΎΠ³ΠΎ, CAD II, вСроятно, прСвосходит CAD I Π² выявлСнии спикулизированных ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉΒ ΠΌΠ°Π»Ρ‹Ρ… Ρ€Π°Π·ΠΌΠ΅Ρ€ΠΎΠ². Частота Π»ΠΎΠΆΠ½ΠΎΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈΒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½ΠΈΠΈ CAD I Π±Ρ‹Π»Π° достовСрно Π²Ρ‹ΡˆΠ΅

    Grayscale Color Mapping with the Mathematical Analysis of an Ultrasound Image in the Differential Diagnosis of Cystic and Solid Breast Masses

    Get PDF
    Objective. Atypical breast cysts are often quite a serious problem in noninvasive ultrasound differential diagnosis. To develop a system for automated analysis of grayscale ultrasound images, which on the principles of mathematical processing would make it possible to increase the specificity of diagnosis in this situation.Material and methods. The authors developed the CystChecker 1.0 software package. To test this system, they used a set of 217 ultrasound images: 107 cystic (including 53 atypical lesions that were hardly differentially diagnosed by standard methods) and 110 solid (both benign and malignant) breast masses. All the masses were verified by cytology and/or histology. Visual assessment was carried out analyzing grayscale ultrasound, color/power Doppler, and elastography images.Results. Using the system developed by the authors could correctly identify all (n = 107 (100%)) typical cysts, 107 (97.3%) of 110 solid masses, and 50 (94.3%) of 53 atypical cysts. On the contrary, the standard visual assessment provided a possibility of correctly identifying all (n = 107 (100%)) typical cysts, 96 (87.3%) of 110 solid masses, and 32 (60.4%) of 53 atypical cysts (p < 0.05). The corresponding values of the overall specificity of automated and visual assessments were 98 and 87%, respectively.Conclusion. Using the system developed by the authors for automated analysis provides a higher specificity than the visual assessment of an ultrasound image, which is carried out by a qualified specialist
    corecore