6,445 research outputs found

    The Glassy Potts Model

    Full text link
    We introduce a Potts model with quenched, frustrated disorder, that enjoys of a gauge symmetry that forbids spontaneous magnetization, and allows the glassy phase to extend from TcT_c down to T=0. We study numerical the 4 dimensional model with q=4q=4 states. We show the existence of a glassy phase, and we characterize it by studying the probability distributions of an order parameter, the binder cumulant and the divergence of the overlap susceptibility. We show that the dynamical behavior of the system is characterized by aging.Comment: 4 pages including 4 (color) ps figures (all on page 4

    On the origin of ultrametricity

    Full text link
    In this paper we show that in systems where the probability distribution of the the overlap is non trivial in the infinity volume limit, the property of ultrametricity can be proved in general starting from two very simple and natural assumptions: each replica is equivalent to the others (replica equivalence or stochastic stability) and all the mutual information about a pair of equilibrium configurations is encoded in their mutual distance or overlap (separability or overlap equivalence).Comment: 13 pages, 1 figur

    DD-dimensional Arrays of Josephson Junctions, Spin Glasses and qq-deformed Harmonic Oscillators

    Full text link
    We study the statistical mechanics of a DD-dimensional array of Josephson junctions in presence of a magnetic field. In the high temperature region the thermodynamical properties can be computed in the limit DD \to \infty, where the problem is simplified; this limit is taken in the framework of the mean field approximation. Close to the transition point the system behaves very similar to a particular form of spin glasses, i.e. to gauge glasses. We have noticed that in this limit the evaluation of the coefficients of the high temperature expansion may be mapped onto the computation of some matrix elements for the qq-deformed harmonic oscillator

    The mean field theory of spin glasses: the heuristic replica approach and recent rigorous results

    Full text link
    The mathematically correct computation of the spin glasses free energy in the infinite range limit crowns 25 years of mathematic efforts in solving this model. The exact solution of the model was found many years ago by using a heuristic approach; the results coming from the heuristic approach were crucial in deriving the mathematical results. The mathematical tools used in the rigorous approach are quite different from those of the heuristic approach. In this note we will review the heuristic approach to spin glasses in the light of the rigorous results; we will also discuss some conjectures that may be useful to derive the solution of the model in an alternative way.Comment: 12 pages, 1 figure; lecture at the Flato Colloquia Day, Thursday 27 November, 200

    Partition function of the Potts model on self-similar lattices as a dynamical system and multiple transitions

    Full text link
    We present an analytic study of the Potts model partition function on two different types of self-similar lattices of triangular shape with non integer Hausdorff dimension. Both types of lattices analyzed here are interesting examples of non-trivial thermodynamics in less than two dimensions. First, the Sierpinski gasket is considered. It is shown that, by introducing suitable geometric coefficients, it is possible to reduce the computation of the partition function to a dynamical system, whose variables are directly connected to (the arising of) frustration on macroscopic scales, and to determine the possible phases of the system. The same method is then used to analyse the Hanoi graph. Again, dynamical system theory provides a very elegant way to determine the phase diagram of the system. Then, exploiting the analysis of the basins of attractions of the corresponding dynamical systems, we construct various examples of self-similar lattices with more than one critical temperature. These multiple critical temperatures correspond to crossing phases with different degrees of frustration.Comment: 16 pages, 12 figures, 1 table; title changed, references and discussion on multiple transitions adde

    Explicit generation of the branching tree of states in spin glasses

    Full text link
    We present a numerical method to generate explicit realizations of the tree of states in mean-field spin glasses. The resulting study illuminates the physical meaning of the full replica symmetry breaking solution and provides detailed information on the structure of the spin-glass phase. A cavity approach ensures that the method is self-consistent and permits the evaluation of sophisticated observables, such as correlation functions. We include an example application to the study of finite-size effects in single-sample overlap probability distributions, a topic that has attracted considerable interest recently.Comment: Version accepted for publication in JSTA

    Continuous RSB mean-field solution of the Potts glass

    Full text link
    We investigate the p-state mean-field model of the Potts glass (2p42\le p \le 4) below the continuous phase transition to a glassy phase. We find that apart from a solution with a first hierarchical level of replica-symmetry breaking (1RSB), locally stable close to the transition point, there is a continuous full replica-symmetry breaking (FRSB) solution. The latter is marginally stable and has a higher free energy than the former. We argue that the true equilibrium is reached only by FRSB, being globally thermodynamically homogeneous, whereas 1RSB is only locally homogeneous.Comment: REVTeX4.1, 4 pages, 1 figur

    On the Effects of Changing the Boundary Conditions on the Ground State of Ising Spin Glasses

    Full text link
    We compute and analyze couples of ground states of 3D spin glass systems with the same quenched noise but periodic and anti-periodic boundary conditions for different lattice sizes. We discuss the possible different behaviors of the system, we analyze the average link overlap, the probability distribution of window overlaps (among ground states computed with different boundary conditions) and the spatial overlap and link overlap correlation functions. We establish that the picture based on Replica Symmetry Breaking correctly describes the behavior of 3D Spin Glasses.Comment: 25 pages with 11 ps figures include

    Space Time MUSIC: Consistent Signal Subspace Estimation for Wide-band Sensor Arrays

    Full text link
    Wide-band Direction of Arrival (DOA) estimation with sensor arrays is an essential task in sonar, radar, acoustics, biomedical and multimedia applications. Many state of the art wide-band DOA estimators coherently process frequency binned array outputs by approximate Maximum Likelihood, Weighted Subspace Fitting or focusing techniques. This paper shows that bin signals obtained by filter-bank approaches do not obey the finite rank narrow-band array model, because spectral leakage and the change of the array response with frequency within the bin create \emph{ghost sources} dependent on the particular realization of the source process. Therefore, existing DOA estimators based on binning cannot claim consistency even with the perfect knowledge of the array response. In this work, a more realistic array model with a finite length of the sensor impulse responses is assumed, which still has finite rank under a space-time formulation. It is shown that signal subspaces at arbitrary frequencies can be consistently recovered under mild conditions by applying MUSIC-type (ST-MUSIC) estimators to the dominant eigenvectors of the wide-band space-time sensor cross-correlation matrix. A novel Maximum Likelihood based ST-MUSIC subspace estimate is developed in order to recover consistency. The number of sources active at each frequency are estimated by Information Theoretic Criteria. The sample ST-MUSIC subspaces can be fed to any subspace fitting DOA estimator at single or multiple frequencies. Simulations confirm that the new technique clearly outperforms binning approaches at sufficiently high signal to noise ratio, when model mismatches exceed the noise floor.Comment: 15 pages, 10 figures. Accepted in a revised form by the IEEE Trans. on Signal Processing on 12 February 1918. @IEEE201
    corecore