1,198 research outputs found

    Energy dissipation in wave propagation in general relativistic plasma

    Full text link
    Based on a recent communication by the present authors the question of energy dissipation in magneto hydrodynamical waves in an inflating background in general relativity is examined. It is found that the expanding background introduces a sort of dragging force on the propagating wave such that unlike the Newtonnian case energy gets dissipated as it progresses. This loss in energy having no special relativistic analogue is, however, not mechanical in nature as in elastic wave. It is also found that the energy loss is model dependent and also depends on the number of dimensions.Comment: 12 page

    Quintessential Phenomena in Higher Dimensional Space Time

    Full text link
    The higher dimensional cosmology provides a natural setting to treat, at a classical level, the cosmological effects of vacuum energy. Here we discuss two situations where starting with an ordinary matter field without any equation of state we end up with a Chaplygin type of gas apparently as a consequence of extra dimensions. In the second case we study the quintessential phenomena in higher dimensional spacetime with the help of a Chaplygin type of matter field. The first case suffers from the disqualification that no dimensional reduction occurs, which is, however, rectified in the second case. Both the models show the sought after feature of occurrence of \emph{flip} in the rate of expansion. It is observed that with the increase of dimensions the occurrence of \emph{flip} is delayed for both the models, more in line with current observational demands. Interestingly we see that depending on some initial conditions our model admits QCDM, Λ\LambdaCDM and also Phantom like evolution within a unified framework. Our solutions are general in nature in the sense that when the extra dimensions are switched off the known 4D model is recovered.Comment: 17 Pages, 7 figure

    Controlled transportation of mesoscopic particles by enhanced spin orbit interaction of light in an optical trap

    Full text link
    We study the effects of the spin orbit interaction (SOI) of light in an optical trap and show that the propagation of the tightly focused trapping beam in a stratified medium can lead to significantly enhanced SOI. For a plane polarized incident beam the SOI manifests itself by giving rise to a strong anisotropic linear diattenuation effect which produces polarization-dependent off-axis high intensity side lobes near the focal plane of the trap. Single micron-sized asymmetric particles can be trapped in the side lobes, and transported over circular paths by a rotation of the plane of input polarization. We demonstrate such controlled motion on single pea-pod shaped single soft oxometalate (SOM) particles of dimension around 1×0.5μ1\times 0.5\mum over lengths up to \sim15 μ\mum . The observed effects are supported by calculations of the intensity profiles based on a variation of the Debye-Wolf approach. The enhanced SOI could thus be used as a generic means of transporting mesoscopic asymmetric particles in an optical trap without the use of complex optical beams or changing the alignment of the beam into the trap.Comment: 9 pages, 7 figure

    Generation of entangled channels for perfect teleportation channels using multi-electron quantum dots

    Full text link
    In this work we have proposed a scheme for generating NN qubit entangled states which can teleport an unknown state perfectly. By switching on the exchange interaction (JJ) between the qubits one can get the desired states periodically. A multi electron quantum dot can be a possible realization for generating such NN qubit states with high fidelity. In the limit of NN \to \infty, there exists a unique time t=1Jcos1(1/8)t=\frac{1}{J}\cos^{-1}(-1/8) where the Hamiltonian dynamics gives the NN qubit state that can assist perfect teleportation. We have also discussed the effect of the nuclear spin environment on the fidelity of teleportation for a general NN qubit entangled channel.Comment: 6 pages, 3 figure
    corecore