627 research outputs found
Proof of the thermodynamical stability of the E' center in SiO2
The E' center is a paradigmatic radiation-induced defect in SiO2 whose
peculiar EPR and hyperfine activity has been known since over 40 years. This
center has been traditionally identified with a distorted, positively-charged
oxygen vacancy V_O+. However, no direct proof of the stability of this defect
has ever been provided, so that its identification is still strongly
incomplete. Here we prove directly that distorted V_O+ is metastable and that
it satisfies the key requirements for its identification as E', such as thermal
and optical response, and activation-deactivation mechanisms.Comment: RevTeX 4 pages, 2 figure
A Model for Ferromagnetic Nanograins with Discrete Electronic States
We propose a simple phenomenological model for an ultrasmall ferromagnetic
grain, formulated in terms of the grain's discrete energy levels. We compare
the model's predictions with recent measurements of the discrete tunneling
spectrum through such a grain. The model can qualitatively account for the
observed features if we assume (i) that the anisotropy energy varies among
different eigenstates of one grain, and (ii) that nonequilibrium spin
accumulation occurs.Comment: 4 pages, 2 figure
Nonequilibrium excitations in Ferromagnetic Nanoparticles
In recent measurements of tunneling transport through individual
ferromagnetic Co nanograins, Deshmukh, Gu\'eron, Ralph et al.
\cite{mandar,gueron} (DGR) observed a tunneling spectrum with discrete
resonances, whose spacing was much smaller than what one would expect from
naive independent-electron estimates. In a previous publication,
\cite{prl_kleff} we had suggested that this was a consequence of nonequilibrium
excitations, and had proposed a ``minimal model'' for ferromagnetism in
nanograins with a discrete excitation spectrum as a framework for analyzing the
experimental data. In the present paper, we provide a detailed analysis of the
properties of this model: We delineate which many-body electron states must be
considered when constructing the tunneling spectrum, discuss various
nonequilibrium scenarios and compare their results with the experimental data
of Refs. \cite{mandar,gueron}. We show that a combination of nonequilibrium
spin- and single-particle excitations can account for most of the observed
features, in particular the abundance of resonances, the resonance spacing and
the absence of Zeeman splitting.Comment: 13 pages, 10 figure
Long-Term Consequences of Methamphetamine Exposure in Young Adults Are Exacerbated in Glial Cell Line-Derived Neurotrophic Factor Heterozygous Mice
Methamphetamine abuse in young adults has long-term deleterious effects on brain function that are associated with damage to monoaminergic neurons. Administration of glial cell line-derived neurotrophic factor (GDNF) protects dopamine neurons from the toxic effects of methamphetamine in animal models. Therefore, we hypothesized that a partial GDNF gene deletion would increase the susceptibility of mice to methamphetamine neurotoxicity during young adulthood and possibly increase age-related deterioration of behavior and dopamine function. Two weeks after a methamphetamine binge (4 x 10 mg/kg, i.p., at 2 h intervals), GDNF +/- mice had a significantly greater reduction of tyrosine hydroxylase immunoreactivity in the medial striatum, a proportionally greater depletion of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the striatum, and a greater increase in activated microglia in the substantia nigra than wild-type mice. At 12 months of age, methamphetamine-treated GDNF +/- mice exhibited less motor activity and lower levels oftyrosine hydroxylase-immunoreactivity, dopamine, DOPAC, and serotoninthanwild-typemice. Greater striatal dopaminetransporter activity in GDNF +/- mice may underlie their differential response to methamphetamine. These data suggest the possibility that methamphetamine use in young adults, when combined with lower levels of GDNF throughout life, may precipitate the appearance of parkinsonian-like behaviors during aging
Treatment of wounds colonized by multidrug resistant organisms in immune-compromised patients: a retrospective case series.
Immune-compromised patients incur a high risk of surgical wound dehiscence and colonization by multidrug resistant organisms. Common treatment has been debridement and spontaneous secondary healing.All immune-compromised patients referred to our Institution between March 1, 2010 and November 30, 2011 for dehiscent abdominal wounds growing multidrug resistant organisms were treated by serial wound debridements and negative pressure dressing. They were primarily closed, despite positive microbiological cultures, when clinical appearance was satisfactory.Nine patients were treated by direct wound closure, five had been treated previously by secondary intention healing.According to our results, fast healing can be safely obtained by closure of a clinically healthy wound, despite growth of multidrug resistant organisms, even in immune-compromised patients
Growth and Atomic‐Scale Characterization of Ultrathin Silica and Germania Films: The Crucial Role of the Metal Support
The present review reports on the preparation and atomic‐scale characterization of the thinnest possible films of the glass‐forming materials silica and germania. To this end state‐of‐the‐art surface science techniques, in particular scanning probe microscopy, and density functional theory calculations have been employed. The investigated films range from monolayer to bilayer coverage where both, the crystalline and the amorphous films, contain characteristic XO4 (X=Si,Ge) building blocks. A side‐by‐side comparison of silica and germania monolayer, zigzag phase and bilayer films supported on Mo(112), Ru(0001), Pt(111), and Au(111) leads to a more general comprehension of the network structure of glass former materials. This allows us to understand the crucial role of the metal support for the pathway from crystalline to amorphous ultrathin film growth
CO adsorption on neutral iridium clusters
The adsorption of carbon monoxide on neutral iridium clusters in the size
range of n = 3 to 21 atoms is investigated with infrared multiple photon
dissociation spectroscopy. For each cluster size only a single v(CO) band is
present with frequencies in the range between 1962 cm-1 (n = 8) and 1985 cm-1
(n = 18) which can be attributed to an atop binding geometry. This behaviour is
compared to the CO binding geometries on clusters of other group 9 and 10
transition metals as well as to that on extended surfaces. The preference of Ir
for atop binding is rationalized by relativistic effects on the electronic
structure of the later 5d metals
- …