186 research outputs found

    Large-Area, Low-Noise, High Speed, Photodiode-Based Fluorescence Detectors with Fast Overdrive Recovery

    Full text link
    Two large-area, low noise, high speed fluorescence detectors have been built. One detector consists of a photodiode with an area of 28 mm x 28 mm and a low noise transimpedance amplifier. This detector has a input light-equivalent spectral noise density of less than 3 pW/Hz^1/2, can recover from a large scattered light pulse within 10 us, and has a bandwidth of at least 900 kHz. The second detector consists of a 16 mm diameter avalanche photodiode and a low-noise transimpedance amplifier. This detector has an input light-equivalent spectral noise density of 0.08 pW/Hz^1/2, also can recover from a large scattered light pulse within 10 us, and has a bandwidth of 1 MHz.Comment: Submitted to Review of Scientific Instrument

    Hyperfine-interaction- and magnetic-field-induced Bose-Einstein-statistics suppressed two-photon transitions

    Full text link
    Two-photon transitions between atomic states of total electronic angular momentum Ja=0J_a=0 and Jb=1J_b=1 are forbidden when the photons are of the same energy. This selection rule is analogous to the Landau-Yang theorem in particle physics that forbids decays of vector particle into two photons. It arises because it is impossible to construct a total angular momentum J2γ=1J_{2\gamma}=1 quantum-mechanical state of two photons that is permutation symmetric, as required by Bose-Einstein statistics. In atoms with non-zero nuclear spin, the selection rule can be violated due to hyperfine interactions. Two distinct mechanisms responsible for the hyperfine-induced two-photon transitions are identified, and the hyperfine structure of the induced transitions is evaluated. The selection rule is also relaxed, even for zero-nuclear-spin atoms, by application of an external magnetic field. Once again, there are two similar mechanisms at play: Zeeman splitting of the intermediate-state sublevels, and off-diagonal mixing of states with different total electronic angular momentum in the final state. The present theoretical treatment is relevant to the ongoing experimental search for a possible Bose-Einstein-statistics violation using two-photon transitions in barium, where the hyperfine-induced transitions have been recently observed, and the magnetic-field-induced transitions are being considered both as a possible systematic effect, and as a way to calibrate the measurement

    Enhancement of the electric dipole moment of the electron in PbO

    Full text link
    The a(1) state of PbO can be used to measure the electric dipole moment of the electron d_e. We discuss a semiempirical model for this state, which yields an estimate of the effective electric field on the valence electrons in PbO. Our final result is an upper limit on the measurable energy shift, which is significantly larger than was anticipated earlier: 2∣Wd∣de≥2.4×1025Hz[deecm] 2|W_d|d_e \ge 2.4\times 10^{25} \textrm{Hz} [ \frac{d_e}{e \textrm{cm}} ].Comment: 4 pages, revtex4, no figures, submitted to PR

    Experimental determination of the 6s^2 ^1S_0 -> 5d6s ^3 D_1 magnetic-dipole transition amplitude in atomic ytterbium

    Full text link
    We report on a measurement of the highly forbidden 6s^2 ^1S_0 \to 5d6s ^3 D_1 magnetic-dipole transition in atomic ytterbium using the Stark-interference technique. This amplitude is important in interpreting a future parity nonconservation experiment that exploits the same transition. We find ∣∣ = 1.33(6)Stat(20)β×10−4μ0| | ~ = ~ 1.33(6)_{Stat}(20)_{\beta} \times 10^{-4} \mu_0, where the larger uncertainty comes from the previously measured vector transition polarizability β\beta. The M1M1 amplitude is small and should not limit the precision of the parity nonconservation experiment.Comment: 4 pages, 5 figures Paper resubmitted with minor corrections and additions based on comments from referee

    Cavity QED in a molecular ion trap

    Full text link
    We propose an approach for studying quantum information and performing high resolution spectroscopy of rotational states of trapped molecular ions using an on-chip superconducting microwave resonator. Molecular ions have several advantages over neutral molecules. Ions can be loaded into deep (1 eV) RF traps and are trapped independent of the electric dipole moment of their rotational transition. Their charge protects them from motional dephasing and prevents collisional loss, allowing 1 s coherence times when used as a quantum memory, with detection of single molecules possible in <10 ms. An analysis of the detection efficiency and coherence properties of the molecules is presented.Comment: 9 pages, 1 figur
    • …
    corecore