3,021 research outputs found
ΠΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½Π°Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠ° Π°Π½Π°Π»ΠΈΠ·Π° Π½Π°Π²ΡΠΊΠΎΠ² ΠΈ ΡΠΌΠ΅Π½ΠΈΠΉ ΠΊΠΎΠ½ΡΠΈΠ½Π³Π΅Π½ΡΠ° ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² Π²ΡΡΡΠ΅Π³ΠΎ ΡΡΠ΅Π±Π½ΠΎΠ³ΠΎ Π·Π°Π²Π΅Π΄Π΅Π½ΠΈΡ
In the below article, the application of the fuzzy logical conclusion method is considered as decision-maker in the process of analyzing the students skills and abilities based on the requirements of potential employers, in order to reduce the time of the first interview for potential candidates on a vacant position. When analyzing the results of the assessment of the competence of university students, a certain degree of fuzziness arises. In modern practice, fuzzy logic is used in many different assessment methods, including questioning, interviewing, testing, descriptive method, classification method, pairwise comparison, rating method, business games competence models, and the like. Each of the methods has its advantages and disadvantages, but they are effective only as part of a unified personnel management system. As a method for implementing a systematic approach to the assessment of the contingent of students, it is proposed to use fuzzy logic, a mathematical apparatus that allows you to build a model of an object based on fuzzy judgments. The use of fuzzy logic, the mathematical apparatus of which allows you to build a model of the object, based on fuzzy reasoning and rules. The most important condition for creating such a model is to translate the fuzzy, qualitative assessments used by man into the language of mathematics, which will be understood by the computer. The most used are fuzzy inferences using the Mamdani and Sugeno methods. In a fuzzy inference of the Mamdani type, the value of the output variable is given by fuzzy terms, in the conclusion of the Sugeno type, as a linear combination of the input variables. Research in the field of application of fuzzy logic in socio-economic systems suggests that it can be used to assess the competencies of university students.Π Π΄Π°Π½Π½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ ΡΠ°ΡΡΠΌΠΎΡΡΠ΅Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ΅ΡΠΎΠ΄Π° Π½Π΅ΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ Π²ΡΠ²ΠΎΠ΄Π° Π΄Π»Ρ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΠΈ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π² Π·Π°Π΄Π°ΡΠ°Ρ
Π°Π½Π°Π»ΠΈΠ·Π° Π½Π°Π²ΡΠΊΠΎΠ² ΠΈ ΡΠΌΠ΅Π½ΠΈΠΉ ΠΊΠΎΠ½ΡΠΈΠ½Π³Π΅Π½ΡΠ° ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΈΡΡ
ΠΎΠ΄Ρ ΠΈΠ· ΡΡΠ΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΡΠ°Π±ΠΎΡΠΎΠ΄Π°ΡΠ΅Π»Π΅ΠΉ, Ρ ΡΠ΅Π»ΡΡ ΡΠΌΠ΅Π½ΡΡΠ΅Π½ΠΈΡ Π²ΡΠ΅ΠΌΠ΅Π½ΠΈ Π½Π° ΠΏΠ΅ΡΠ²ΠΈΡΠ½ΡΡ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΈ ΠΊΠ°ΡΠ°ΡΠ΅Π»ΡΠ½ΠΎ ΠΏΠΎΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΡΡ
ΠΊΠ°Π½Π΄ΠΈΠ΄Π°ΡΠΎΠ² Π½Π° Π²Π°ΠΊΠ°Π½ΡΠ½ΡΡ Π΄ΠΎΠ»ΠΆΠ½ΠΎΡΡΡ. ΠΡΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΠΎΠ² ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² Π²ΡΠ·ΠΎΠ² Π²ΠΎΠ·Π½ΠΈΠΊΠ°Π΅Ρ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π½Π°Ρ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π½Π΅ΡΠ΅ΡΠΊΠΎΡΡΠΈ. Π ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ ΠΏΡΠ°ΠΊΡΠΈΠΊΠ΅ Π½Π΅ΡΠ΅ΡΠΊΠ°Ρ Π»ΠΎΠ³ΠΈΠΊΠ° ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
ΠΌΠ΅ΡΠΎΠ΄Π°Ρ
ΠΎΡΠ΅Π½ΠΊΠΈ, Π² ΡΠΎΠΌ ΡΠΈΡΠ»Π΅ Π°Π½ΠΊΠ΅ΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅, ΠΈΠ½ΡΠ΅ΡΠ²ΡΡ, ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅, ΠΎΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄, ΠΌΠ΅ΡΠΎΠ΄ ΠΊΠ»Π°ΡΡΠΈΡΠΈΠΊΠ°ΡΠΈΠΈ, ΠΏΠ°ΡΠ½ΠΎΠ΅ ΡΡΠ°Π²Π½Π΅Π½ΠΈΠ΅, ΡΠ΅ΠΉΡΠΈΠ½Π³ΠΎΠ²ΡΠΉ ΠΌΠ΅ΡΠΎΠ΄, Π΄Π΅Π»ΠΎΠ²ΡΠ΅ ΠΈΠ³ΡΡ ΠΌΠΎΠ΄Π΅Π»ΠΈ ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠ½ΠΎΡΡΠΈ ΠΈ ΡΠΎΠΌΡ ΠΏΠΎΠ΄ΠΎΠ±Π½ΠΎΠ΅. ΠΠ°ΠΆΠ΄ΡΠΉ ΠΈΠ· ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈΠΌΠ΅Π΅Ρ ΡΠ²ΠΎΠΈ ΠΏΡΠ΅ΠΈΠΌΡΡΠ΅ΡΡΠ²Π° ΠΈ Π½Π΅Π΄ΠΎΡΡΠ°ΡΠΊΠΈ, Π½ΠΎ ΡΡΡΠ΅ΠΊΡΠΈΠ²Π½Ρ ΠΎΠ½ΠΈ ΡΠΎΠ»ΡΠΊΠΎ Π² ΡΠΎΡΡΠ°Π²Π΅ Π΅Π΄ΠΈΠ½ΠΎΠΉ ΡΠΈΡΡΠ΅ΠΌΡ ΡΠΏΡΠ°Π²Π»Π΅Π½ΠΈΡ ΠΏΠ΅ΡΡΠΎΠ½Π°Π»ΠΎΠΌ. ΠΠ°ΠΊ ΠΌΠ΅ΡΠΎΠ΄ Π΄Π»Ρ ΡΠ΅Π°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΡΠΈΡΡΠ΅ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠΎΠ΄Ρ
ΠΎΠ΄Π° ΠΊ ΠΎΡΠ΅Π½ΠΊΠ΅ ΠΊΠΎΠ½ΡΠΈΠ½Π³Π΅Π½ΡΠ° ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² ΠΏΡΠ΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡ Π½Π΅ΡΠ΅ΡΠΊΡΡ Π»ΠΎΠ³ΠΈΠΊΡ, ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΠΏΠΏΠ°ΡΠ°Ρ, ΠΊΠΎΡΠΎΡΡΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ°, ΠΎΡΠ½ΠΎΠ²Π°Π½Π½ΡΡ Π½Π° Π½Π΅ΡΠ΅ΡΠΊΠΈΡ
ΡΡΠΆΠ΄Π΅Π½ΠΈΡΡ
. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΡΠ΅ΡΠΊΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ, ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠΉ Π°ΠΏΠΏΠ°ΡΠ°Ρ ΠΊΠΎΡΠΎΡΠΎΠΉ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΠΏΠΎΡΡΡΠΎΠΈΡΡ ΠΌΠΎΠ΄Π΅Π»Ρ ΠΎΠ±ΡΠ΅ΠΊΡΠ°, ΠΎΡΠ½ΠΎΠ²ΡΠ²Π°ΡΡΡ Π½Π° Π½Π΅ΡΠ΅ΡΠΊΠΈΡ
ΡΠ°ΡΡΡΠΆΠ΄Π΅Π½ΠΈΡΡ
ΠΈ ΠΏΡΠ°Π²ΠΈΠ»Π°Ρ
. ΠΠ°ΠΆΠ½Π΅ΠΉΡΠ΅Π΅ ΡΡΠ»ΠΎΠ²ΠΈΠ΅ ΡΠΎΠ·Π΄Π°Π½ΠΈΡ ΡΠ°ΠΊΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ Π·Π°ΠΊΠ»ΡΡΠ°Π΅ΡΡΡ Π² ΡΠΎΠΌ, ΡΡΠΎΠ±Ρ ΠΏΠ΅ΡΠ΅Π²Π΅ΡΡΠΈ Π½Π΅ΡΠ΅ΡΠΊΠΈΠ΅, ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΠ΅ ΠΎΡΠ΅Π½ΠΊΠΈ, ΠΏΡΠΈΠΌΠ΅Π½ΡΠ΅ΠΌΡΠ΅ ΡΠ΅Π»ΠΎΠ²Π΅ΠΊΠΎΠΌ, Π½Π° ΡΠ·ΡΠΊ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ, ΠΊΠΎΡΠΎΡΠ°Ρ Π±ΡΠ΄Π΅Ρ ΠΏΠΎΠ½ΡΡΠ½Π° Π²ΡΡΠΈΡΠ»ΠΈΡΠ΅Π»ΡΠ½ΠΎΠΉ ΠΌΠ°ΡΠΈΠ½Π΅. ΠΠ°ΠΈΠ±ΠΎΠ»Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΠ΅ΠΌΡΠΌΠΈ ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ΡΠ΅ΡΠΊΠΈΠ΅ Π²ΡΠ²ΠΎΠ΄Ρ Ρ ΠΏΠΎΠΌΠΎΡΡΡ ΡΠΏΠΎΡΠΎΠ±ΠΎΠ² ΠΠ°ΠΌΠ΄Π°Π½ΠΈ ΠΈ Π‘ΡΠ³Π΅Π½ΠΎ. Π Π½Π΅ΡΠ΅ΡΠΊΠΎΠΌ Π²ΡΠ²ΠΎΠ΄Π΅ ΡΠΈΠΏΠ° ΠΠ°ΠΌΠ΄Π°Π½ΠΈ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡ
ΠΎΠ΄Π½ΠΎΠΉ ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠΉ Π·Π°Π΄Π°ΡΡΡΡ Π½Π΅ΡΠ΅ΡΠΊΠΈΠΌΠΈ ΡΠ΅ΡΠΌΠ°ΠΌΠΈ, Π² Π·Π°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠΈ ΡΠΈΠΏΠ° Π‘ΡΠ³Π΅Π½ΠΎ β ΠΊΠ°ΠΊ Π»ΠΈΠ½Π΅ΠΉΠ½Π°Ρ ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΡ Π²Ρ
ΠΎΠ΄Π½ΡΡ
ΠΏΠ΅ΡΠ΅ΠΌΠ΅Π½Π½ΡΡ
. ΠΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ Π½Π΅ΡΠ΅ΡΠΊΠΎΠΉ Π»ΠΎΠ³ΠΈΠΊΠΈ Π² ΡΠΎΡΠΈΠΎΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΈΡ
ΡΠΈΡΡΠ΅ΠΌΠ°Ρ
ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡΡ Π³ΠΎΠ²ΠΎΡΠΈΡΡ ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΠΈ Π΅Π΅ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ Π΄Π»Ρ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠΎΠΌΠΏΠ΅ΡΠ΅Π½ΡΠΈΠΉ ΡΡΡΠ΄Π΅Π½ΡΠΎΠ² Π²ΡΠ·ΠΎΠ²
Elasticity-mediated self-organization and colloidal interactions of solid spheres with tangential anchoring in a nematic liquid crystal
Using laser tweezers and fluorescence confocal polarizing microscopy, we
study colloidal interactions of solid microspheres in the nematic bulk caused
by elastic distortions around the particles with strong tangential surface
anchoring. The particles aggregate into chains directed at about 30 degrees to
the far field director and, at higher concentrations, form complex kinetically
trapped structures. We characterize the distance and angular dependencies of
the colloidal interaction forces.Comment: 6 pages, 5 figure
Photons as Ultra High Energy Cosmic Rays ?
We study spectra of the Ultra High Energy Cosmic Rays assuming primaries are
protons and photons, and that their sources are extragalactic. We assume power
low for the injection spectra and take into account the influence of cosmic
microwave, infrared, optical and radio backgrounds as well as extragalactic
magnetic fields on propagation of primaries. Our additional free parameters are
the maximum energy of injected particles and the distance to the nearest
source. We find a parameter range where the Greisen-Zatsepin-Kuzmin cut-off is
avoided.Comment: 4 pages, 4 figure
Towards single-electron metrology
We review the status of the understanding of single-electron transport (SET)
devices with respect to their applicability in metrology. Their envisioned role
as the basis of a high-precision electrical standard is outlined and is
discussed in the context of other standards. The operation principles of single
electron transistors, turnstiles and pumps are explained and the fundamental
limits of these devices are discussed in detail. We describe the various
physical mechanisms that influence the device uncertainty and review the
analytical and numerical methods needed to calculate the intrinsic uncertainty
and to optimise the fabrication and operation parameters. Recent experimental
results are evaluated and compared with theoretical predictions. Although there
are discrepancies between theory and experiments, the intrinsic uncertainty is
already small enough to start preparing for the first SET-based metrological
applications.Comment: 39 pages, 14 figures. Review paper to be published in International
Journal of Modern Physics
Global anisotropy of arrival directions of ultra-high-energy cosmic rays: capabilities of space-based detectors
Planned space-based ultra-high-energy cosmic-ray detectors (TUS, JEM-EUSO and
S-EUSO) are best suited for searches of global anisotropies in the distribution
of arrival directions of cosmic-ray particles because they will be able to
observe the full sky with a single instrument. We calculate quantitatively the
strength of anisotropies associated with two models of the origin of the
highest-energy particles: the extragalactic model (sources follow the
distribution of galaxies in the Universe) and the superheavy dark-matter model
(sources follow the distribution of dark matter in the Galactic halo). Based on
the expected exposure of the experiments, we estimate the optimal strategy for
efficient search of these effects.Comment: 19 pages, 7 figures, iopart style. v.2: discussion of the effect of
the cosmic magnetic fields added; other minor changes. Simulated UHECR
skymaps available at http://livni.inr.ac.ru/UHECRskymaps
Chaos and Elliptical Galaxies
Recent results on chaos in triaxial galaxy models are reviewed. Central mass
concentrations like those observed in early-type galaxies -- either stellar
cusps, or massive black holes -- render most of the box orbits in a triaxial
potential stochastic. Typical Liapunov times are 3-5 crossing times, and
ensembles of stochastic orbits undergo mixing on time scales that are roughly
an order of magnitude longer. The replacement of the regular orbits by
stochastic orbits reduces the freedom to construct self-consistent equilibria,
and strong triaxiality can be ruled out for galaxies with sufficiently high
central mass concentrations.Comment: uuencoded gziped PostScript, 12 pages including figure
Lorentz invariance violation in top-down scenarios of ultrahigh energy cosmic ray creation
The violation of Lorentz invariance (LI) has been invoked in a number of ways
to explain issues dealing with ultrahigh energy cosmic ray (UHECR) production
and propagation. These treatments, however, have mostly been limited to
examples in the proton-neutron system and photon-electron system. In this paper
we show how a broader violation of Lorentz invariance would allow for a series
of previously forbidden decays to occur, and how that could lead to UHECR
primaries being heavy baryonic states or Higgs bosons.Comment: Replaced with heavily revised (see new Abstract) version accepted by
Phys. Rev. D. 6 page
- β¦