909 research outputs found
The Quantified Relationship
The growth of self-tracking and personal surveillance has given rise to the Quantified Self movement. Members of this movement seek to enhance their personal well-being, productivity, and self-actualization through the tracking and gamification of personal data. The technologies that make this possible can also track and gamify aspects of our interpersonal, romantic relationships. Several authors have begun to challenge the ethical and normative implications of this development. In this article, we build upon this work to provide a detailed ethical analysis of the Quantified Relationship. We identify eight core objections to the QR and subject them to critical scrutiny. We argue that although critics raise legitimate concerns, there are ways in which tracking technologies can be used to support and facilitate good relationships. We thus adopt a stance of cautious openness toward this technology and advocate the development of a research agenda for the positive use of QR technologies
Self-consumption and self-sufficiency for household solar producers when introducing an electric vehicle
The aim of this study was to analyse how electric vehicles (EVs) affect the levels of electricity self-consumption and self-sufficiency in households that have in-house electricity generation from solar photovoltaics (PV). A model of the household electricity system was developed, in which real-time measurements of household electricity consumption and vehicle driving, together with modelled PV generation were used as inputs. The results show that using an EV for storage of in-house-generated PV electricity has the potential to achieve the same levels of self-consumption and self-sufficiency for households as could be obtained using a stationary battery. As an example, the level of self-sufficiency (21.4%) obtained for the households, with a median installed PV capacity of 8.7 kWp, was the same with an EV as with a stationary battery with a median capacity of 2.9 kWh. However, substantial variations (up to 50% points) were noted between households, primarily reflecting driving profiles
Metallicity at the explosion sites of interacting transients
Context. Some circumstellar-interacting (CSI) supernovae (SNe) are produced
by the explosions of massive stars that have lost mass shortly before the SN
explosion. There is evidence that the precursors of some SNe IIn were luminous
blue variable (LBV) stars. For a small number of CSI SNe, outbursts have been
observed before the SN explosion. Eruptive events of massive stars are named as
SN impostors (SN IMs) and whether they herald a forthcoming SN or not is still
unclear. The large variety of observational properties of CSI SNe suggests the
existence of other progenitors, such as red supergiant (RSG) stars with
superwinds. Furthermore, the role of metallicity in the mass loss of CSI SN
progenitors is still largely unexplored. Aims. Our goal is to gain insight on
the nature of the progenitor stars of CSI SNe by studying their environments,
in particular the metallicity at their locations. Methods. We obtain
metallicity measurements at the location of 60 transients (including SNe IIn,
SNe Ibn, and SN IMs), via emission-line diagnostic on optical spectra obtained
at the Nordic Optical Telescope and through public archives. Metallicity values
from the literature complement our sample. We compare the metallicity
distributions among the different CSI SN subtypes and to those of other
core-collapse SN types. We also search for possible correlations between
metallicity and CSI SN observational properties. Results. We find that SN IMs
tend to occur in environments with lower metallicity than those of SNe IIn.
Among SNe IIn, SN IIn-L(1998S-like) SNe show higher metallicities, similar to
those of SNe IIL/P, whereas long-lasting SNe IIn (1988Z-like) show lower
metallicities, similar to those of SN IMs. The metallicity distribution of SNe
IIn can be reproduced by combining the metallicity distributions of SN IMs
(that may be produced by major outbursts of massive stars like LBVs) and SNe
IIP (produced by RSGs). The same applies to the distributions of the Normalized
Cumulative Rank (NCR) values, which quantifies the SN association to H II
regions. For SNe IIn, we find larger mass-loss rates and higher CSM velocities
at higher metallicities. The luminosity increment in the optical bands during
SN IM outbursts tend to be larger at higher metallicity, whereas the SN IM
quiescent optical luminosities tend to be lower. Conclusions. The difference in
metallicity between SNe IIn and SN IMs suggests that LBVs are only one of the
progenitor channels for SNe IIn, with 1988Z-like and 1998S-like SNe possibly
arising from LBVs and RSGs, respectively. Finally, even though linedriven winds
likely do not primarily drive the late mass-loss of CSI SN progenitors,
metallicity has some impact on the observational properties of these
transients. Key words. supernovae: general - stars: evolution - galaxies:
abundancesComment: Submitted to Astronomy and Astrophysics on 28/02/2015; submitted to
arXiv after the 1st referee repor
Effects of a localized beam on the dynamics of excitable cavity solitons
We study the dynamical behavior of dissipative solitons in an optical cavity
filled with a Kerr medium when a localized beam is applied on top of the
homogeneous pumping. In particular, we report on the excitability regime that
cavity solitons exhibits which is emergent property since the system is not
locally excitable. The resulting scenario differs in an important way from the
case of a purely homogeneous pump and now two different excitable regimes, both
Class I, are shown. The whole scenario is presented and discussed, showing that
it is organized by three codimension-2 points. Moreover, the localized beam can
be used to control important features, such as the excitable threshold,
improving the possibilities for the experimental observation of this
phenomenon.Comment: 9 Pages, 12 figure
The Technological Future of Love
How might emerging and future technologiesâsex robots, love drugs, anti-love drugs, or algorithms to track, quantify, and âgamifyâ romantic relationshipsâchange how we understand and value love? We canvass some of the main ethical worries posed by such technologies, while also considering whether there are reasons for âcautious optimismâ about their implications for our lives. Along the way, we touch on some key ideas from the philosophies of love and technology
- âŠ