48 research outputs found
Programmable active memories in real-time tasks: implementing data-driven triggers for LHC experiments
The future Large Hadron Collider (LHC), to be built at CERN, presents among other technological challenges a formidable problem of real-time data analysis. At a primary event rate of 40 MHz, a multi-stage trigger system has to analyze data to decide which is the fraction of events that should be preserved on permanent storage for further analysis. We report on implementations of local algorithms for feature extraction as part of triggering, using the detectors of the proposed ATLAS experiment as a model. The algorithms were implemented for a decision frequency of 100 kHz, on different data-driven programmable devices based on structures of field- programmable gate arrays and memories. The implementations were demonstrated at full speed with emulated input, and were also integrated into a prototype detector running in a test beam at CERN, in June 1994
Functional Importance of the DNA Binding Activity of Candida albicans Czf1p
The human opportunistic pathogen Candida albicans undergoes a reversible morphological transition between the yeast and hyphal states in response to a variety of signals. One such environmental trigger is growth within a semisolid matrix such as agar medium. This growth condition is of interest because it may mimic the growth of C. albicans in contact with host tissue during infection. During growth within a semisolid matrix, hyphal growth is positively regulated by the transcriptional regulator Czf1p and negatively by a second key transcriptional regulator, Efg1p. Genetic studies indicate that Czf1p, a member of the zinc-cluster family of transcriptional regulators, exerts its function by opposing the inhibitory influence of Efg1p on matrix-induced filamentous growth. We examined the importance of the two known activities of Czf1p, DNA-binding and interaction with Efg1p. We found that the two activities were separable by mutation allowing us to demonstrate that the DNA-binding activity of Czf1p was essential for its role as a positive regulator of morphogenesis. Surprisingly, however, interactions with Efg1p appeared to be largely dispensable. Our studies provide the first evidence of a key role for the DNA-binding activity of Czf1p in the morphological yeast-to-hyphal transition triggered by matrix-embedded growth
Alternative activation of tumor-associated macrophages by IL-4: Priming for protumoral functions
Although macrophages were originally recognized as major immune effector cells, it is now appreciated that they also play many important roles in the maintenance of tissue homeostasis, and are involved in a variety of pathological conditions including cancer. Several studies have demonstrated the contributions of tumor-associated macrophages (TAMs) to tumor initiation, progression and metastasis. However, the detailed mechanisms underlying how TAMs differ molecularly from their normal counterparts and how the conversion to TAMs occurs have only just begun to be understood. TAMs have been proposed to exhibit phenotypes of ‘alternatively activated’ acrophages, though there has been limited evidence directly linking the phenotypes of TAMs to the alternative activation of macrophages. This review will focus on IL-4, the prototypic cytokine that induces the alternative activation of macrophages, and review current knowledge regarding the contributions of IL-4 to the phenotypes of TAMs and its effects on tumorigenesis