111 research outputs found

    Bers-ERK Schwann Cells Coordinate Nerve Regeneration

    Get PDF
    In this issue of Neuron, Napoli et al. (2012) demonstrate that elevated ERK/MAPK signaling in Schwann cells is a crucial trigger for Schwann cell dedifferentiation in vivo. Moreover, the authors show that dedifferentiated Schwann cells have the potential to coordinate much of the peripheral nerve response to injury

    Taking Off the SOCS: Cytokine Signaling Spurs Regeneration

    Get PDF
    Strategies to improve function after CNS injuries must contend with the failure of axons to regrow after transection in adult mammals. In this issue of Neuron, Smith et al. provide an important advance by demonstrating that SOCS3 acts as a key negative regulator of adult optic nerve regeneration

    Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex

    Get PDF
    Aberrant signaling through the Raf/MEK/ERK (ERK/MAPK) pathway causes pathology in a family of neurodevelopmental disorders known as 'RASopathies' and is implicated in autism pathogenesis. Here, we have determined the functions of ERK/MAPK signaling in developing neocortical excitatory neurons. Our data reveal a critical requirement for ERK/MAPK signaling in the morphological development and survival of large Ctip2+ neurons in layer 5. Loss of Map2k1/2 (Mek1/2) led to deficits in corticospinal tract formation and subsequent corticospinal neuron apoptosis. ERK/MAPK hyperactivation also led to reduced corticospinal axon elongation, but was associated with enhanced arborization. ERK/MAPK signaling was dispensable for axonal outgrowth of layer 2/3 callosal neurons. However, Map2k1/2 deletion led to reduced expression of Arc and enhanced intrinsic excitability in both layers 2/3 and 5, in addition to imbalanced synaptic excitation and inhibition. These data demonstrate selective requirements for ERK/MAPK signaling in layer 5 circuit development and general effects on cortical pyramidal neuron excitability

    Accumbens Cholinergic Interneurons Mediate Cue-Induced Nicotine Seeking and Associated Glutamatergic Plasticity

    Get PDF
    Nicotine, the primary addictive substance in tobacco, is widely abused. Relapse to cues associated with nicotine results in increased glutamate release within nucleus accumbens core (NAcore), modifying synaptic plasticity of medium spiny neurons (MSNs), which contributes to reinstatement of nicotine seeking. However, the role of cholinergic interneurons (ChIs) within the NAcore in mediating these neurobehavioral processes is unknown. ChIs represent less than 1% of the accumbens neuronal population and are activated during drug seeking and reward-predicting events. Thus, we hypothesized that ChIs may play a significant role in mediating glutamatergic plasticity that underlies nicotine-seeking behavior. Using chemogenetics in transgenic rats expressing Cre under the control of the choline acetyltransferase (ChAT) promoter, ChIs were bidirectionally manipulated before cue-induced reinstatement. Following nicotine self-administration and extinction, ChIs were activated or inhibited before a cue reinstatement session. Following reinstatement, whole-cell electrophysiology from NAcore MSNs was used to assess changes in plasticity, measured via AMPA/NMDA (A/N) ratios. Chemogenetic inhibition of ChIs inhibited cued nicotine seeking and resulted in decreased A/N, relative to control animals, whereas activation of ChIs was unaltered, demonstrating that ChI inhibition may modulate plasticity underlying cue-induced nicotine seeking. These results demonstrate that ChI neurons play an important role in mediating cue-induced nicotine reinstatement and underlying synaptic plasticity within the NAcore

    22q11 Gene dosage establishes an adaptive range for sonic hedgehog and retinoic acid signaling during early development

    Get PDF
    We asked whether key morphogenetic signaling pathways interact with 22q11 gene dosage to modulate the severity of cranial or cardiac anomalies in DiGeorge/22q1 deletion syndrome (22q11DS). Sonic hedgehog (Shh) and retinoic acid (RA) signaling is altered in the brain and heart—clinically significant 22q11DS phenotypic sites—in LgDel mouse embryos, an established 22q11DS model. LgDel embryos treated with cyclopamine, an Shh inhibitor, or carrying mutations in Gli3Xtj, an Shh-signaling effector, have morphogenetic anomalies that are either not seen, or seen at significantly lower frequencies in control or single-mutant embryos. Similarly, RA exposure or genetic loss of RA function via heterozygous mutation of the RA synthetic enzyme Raldh2 induces novel cranial anomalies and enhances cardiovascular phenotypes in LgDel but not other genotypes. These changes are not seen in heterozygous Tbx1 mutant embryos—a 22q11 gene thought to explain much of 22q11DS pathogenesis—in which Shh or RA signaling has been similarly modified. Our results suggest that full dosage of 22q11 genes beyond Tbx1 establish an adaptive range for morphogenetic signaling via Shh and RA. When this adaptive range is constricted by diminished dosage of 22q11 genes, embryos are sensitized to otherwise benign changes in Shh and RA signaling. Such sensitization, in the face of environmental or genetic factors that modify Shh or RA signaling, may explain variability in 22q11DS morphogenetic phenotypes

    An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A

    Get PDF
    Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS) while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside the catalytic domain, at residue T485, and inhibits UBE3A activity towards itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity, and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis

    MEK Is a Key Regulator of Gliogenesis in the Developing Brain

    Get PDF
    We have defined functions of MEK in regulating gliogenesis in developing cerebral cortex using loss and gain of function mouse genetics. Radial progenitors deficient in both Mek1 and Mek2 fail to transition to the gliogenic mode in late embryogenesis, and astrocyte and oligodendroglial precursors fail to appear. In exploring mechanisms, we found that the key cytokine regulated gliogenic pathway is attenuated. Further, the Ets transcription family member Etv5/Erm is strongly regulated by MEK and Erm overexpression can rescue the gliogenic potential of Mek deleted progenitors. Remarkably, Mek1/2 deleted mice surviving postnatally exhibit cortices almost devoid of astrocytes and oligodendroglia and exhibit neurodegeneration. Conversely, expression of constitutively active MEK1 leads to a major increase in numbers of astrocytes in the adult brain. We conclude that MEK is essential for acquisition of gliogenic competence by radial progenitors, and that levels of MEK activity regulate gliogenesis in the developing cortex

    An Autism-Linked Mutation Disables Phosphorylation Control of UBE3A

    Get PDF
    Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS) while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside the catalytic domain, at residue T485, and inhibits UBE3A activity towards itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity, and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis

    Specific Functions for ERK/MAPK Signaling during PNS Development

    Get PDF
    We have established functions of the stimulus dependent MAPKs, ERK1/2 and ERK5 in DRG, motor neuron, and Schwann cell development. Surprisingly, many aspects of early DRG and motor neuron development were found to be ERK1/2 independent and Erk5 deletion had no obvious effect on embryonic PNS. In contrast, Erk1/2 deletion in developing neural crest resulted in peripheral nerves that were devoid of Schwann cell progenitors, and deletion of Erk1/2 in Schwann cell precursors caused disrupted differentiation and marked hypomyelination of axons. The Schwann cell phenotypes are similar to those reported in neuregulin-1 and ErbB mutant mice and neuregulin effects could not be elicited in glial precursors lacking Erk1/2. ERK/MAPK regulation of myelination was specific to Schwann cells, as deletion in oligodendrocyte precursors did not impair myelin formation, but reduced precursor proliferation. Our data suggest a tight linkage between developmental functions of ERK/MAPK signaling and biological actions of specific RTK-activating factors
    • …
    corecore