475 research outputs found

    Composite and elementary natures of a1(1260) meson

    Full text link
    We develop a practical method to analyze the mixing structure of hadrons consisting of two components of quark-composite and hadronic composite. As an example we investigate the properties of the axial vector meson a1(1260) and discuss its mixing properties quantitatively. We also make reference to the large Nc procedure and its limitation for the classification of such a mixed state.Comment: 13 pages, 4 figure

    Baryon charge from embedding topology and a continuous meson spectrum in a new holographic gauge theory

    Full text link
    We study a new holographic gauge theory based on probe D4-branes in the background dual to D4-branes on a circle with antiperiodic boundary conditions for fermions. Field theory configurations with baryons correspond to smooth embeddings of the probe D4-branes with nontrivial winding around an S^4 in the geometry. As a consequence, physics of baryons and nuclei can be studied reliably in this model using the abelian Born-Infeld action. However, surprisingly, we find that the meson spectrum is not discrete. This is related to a curious result that the action governing small fluctuations of the gauge field on the probe brane is the five-dimensional Maxwell action in Minkowski space despite the non-trivial embedding of the probe brane in the curved background geometry.Comment: 24 pages, LaTeX, 10 figures, v4: previously ignored effects of coupling to RR-fields included, meson spectrum qualitatively changed, v5: journal versio

    Transport Properties of a Josephson-Coupled Network in a Superconductive Ceramic of YBa2Cu4O8

    Get PDF
    Ceramic YBa2Cu4O8 samples composed of sub-micron size grains are considered as random Josephson-coupled networks of 0 and π junctions, and they show successive phase transitions. The first transition occurs inside each grain at Tc1 and the second transition occurs among the grains at Tc2 (> Tc1), where a negative divergence of nonlinear susceptibility is found. This critical phenomenon at Tc2 suggests the onset of the chiral-glass phase, as predicted by Kawamura and Li. We measured the temperature dependencies of the current-voltage characteristics of the samples and derived the linear and nonlinear resistivities. With decreases in temperature, linear resistivity decreased monotonously and remained at a finite value at temperatures less than Tc2, while nonlinear resistivity diminished continuously for temperatures moving towards Tc2. These results are consistent with the theoretical predictions.Proceedings of the 25th International Conference on Low Temperature Physics (LT 25), August 6-13, 2008, Amsterdam, Netherland

    A note on fermions in holographic QCD

    Full text link
    We study the fermionic sector of a probe D8-brane in the supergravity background made of D4-branes compactified on a circle with supersymmetry broken explicitly by the boundary conditions. At low energies the dual field theory is effectively four-dimensional and has proved surprisingly successful in recovering qualitative and quantitative properties of QCD. We investigate fluctuations of the fermionic fields on the probe D8-brane and interpret these as mesinos (fermionic superpartners of mesons). We demonstrate that the masses of these modes are comparable to meson masses and show that their interactions with ordinary mesons are not suppressed.Comment: 21+1 pp, 1 figure; v2: typos corrected, refs. adde

    Sakai-Sugimoto model, Tachyon Condensation and Chiral symmetry Breaking

    Full text link
    We modify the Sakai-Sugimoto model of chiral symmetry breaking to take into account the open string tachyon which stretches between the flavour D8-branes and anti D8-branes. There are several reasons of consistency for doing this: (i) Even if it might be reasonable to ignore the tachyon in the ultraviolet where the flavour branes and antibranes are well separated and the tachyon is small, it is likely to condense and acquire large values in the infrared where the branes meet. This takes the system far away from the perturbatively stable minimum of the Sakai-Sugimoto model; (ii) The bifundamental coupling of the tachyon to fermions of opposite chirality makes it a suitable candidate for the quark mass and chiral condensate parameters. We show that the modified Sakai-Sugimoto model with the tachyon present has a classical solution satisfying all the desired consistency properties. In this solution chiral symmetry breaking coincides with tachyon condensation. We identify the parameters corresponding to the quark mass and the chiral condensate and also briefly discuss the mesonic spectra.Comment: 18 pages, latex; v3; conclusion in subsection 3.1 modified and appropriate changes made in the abstract and introduction to reflect this; typos corrected; version to appear in JHE

    Brane-induced Skyrmion on S^3: baryonic matter in holographic QCD

    Get PDF
    We study baryonic matter in holographic QCD with D4/D8/\bar{D8} multi-D brane system in type IIA superstring theory. The baryon is described as the "brane-induced Skyrmion", which is a topologically non-trivial chiral soliton in the four-dimensional meson effective action induced by holographic QCD. We employ the "truncated-resonance model" approach for the baryon analysis, including pion and \rho meson fields below the ultraviolet cutoff scale M_KK \sim 1GeV, to keep the holographic duality with QCD. We describe the baryonic matter in large N_c as single brane-induced Skyrmion on the three-dimensional closed manifold S^3 with finite radius R. The interactions between baryons are simulated by the curvature of the closed manifold S^3, and the decrease of the size of S^3 represents the increase of the total baryon-number density in the medium in this modeling. We investigate the energy density, the field configuration, the mass and the root-mean-square radius of single baryon on S^3 as the function of its radius R. We find a new picture of "pion dominance" near the critical density in the baryonic matter, where all the (axial) vector meson fields disappear and only the pion field survive. We also find the "swelling" phenomena of the baryons as the precursor of the deconfinement, and propose the mechanism of the swelling in general context of QCD. The properties of the deconfinement and the chiral symmetry restoration in the baryonic matter are examined by taking the proper order parameters. We also compare our truncated-resonance model with another "instanton" description of the baryon in holographic QCD, considering the role of cutoff scale M_KK.Comment: 25 pages, 12 figure

    Cold Nuclear Matter In Holographic QCD

    Full text link
    We study the Sakai-Sugimoto model of holographic QCD at zero temperature and finite chemical potential. We find that as the baryon chemical potential is increased above a critical value, there is a phase transition to a nuclear matter phase characterized by a condensate of instantons on the probe D-branes in the string theory dual. As a result of electrostatic interactions between the instantons, this condensate expands towards the UV when the chemical potential is increased, giving a holographic version of the expansion of the Fermi surface. We argue based on properties of instantons that the nuclear matter phase is necessarily inhomogeneous to arbitrarily high density. This suggests an explanation of the "chiral density wave" instability of the quark Fermi surface in large N_c QCD at asymptotically large chemical potential. We study properties of the nuclear matter phase as a function of chemical potential beyond the transition and argue in particular that the model can be used to make a semi-quantitative prediction of the binding energy per nucleon for nuclear matter in ordinary QCD.Comment: 31 pages, LaTeX, 1 figure, v2: some formulae corrected, qualitative results unchange

    Confront Holographic QCD with Regge Trajectories of vectors and axial-vectors

    Full text link
    We derive the general 5-dimension metric structure of the DpDqDp-Dq system in type II superstring theory, and demonstrate the physical meaning of the parameters characterizing the 5-dimension metric structure of the \textit{holographic} QCD model by relating them to the parameters describing Regge trajectories. By matching the spectra of vector mesons ρ1\rho_1 with deformed DpDqDp-Dq soft-wall model, we find that the spectra of vector mesons ρ1\rho_1 can be described very well in the soft-wall D3DqD3-Dq model, i.e, AdS5AdS_5 soft-wall model. We then investigate how well the AdS5AdS_5 soft-wall model can describe the Regge trajectory of axial-vector mesons a1a_1. We find that the constant component of the 5-dimension mass square of axial-vector mesons plays an efficient role to realize the chiral symmetry breaking in the vacuum, and a small negative z4z^4 correction in the 5-dimension mass square is helpful to realize the chiral symmetry restoration in high excitation states.Comment: 9 pages, 3 figure and 3 tables, one section adde
    corecore