31,499 research outputs found

    Hierarchical ResNeXt Models for Breast Cancer Histology Image Classification

    Full text link
    Microscopic histology image analysis is a cornerstone in early detection of breast cancer. However these images are very large and manual analysis is error prone and very time consuming. Thus automating this process is in high demand. We proposed a hierarchical system of convolutional neural networks (CNN) that classifies automatically patches of these images into four pathologies: normal, benign, in situ carcinoma and invasive carcinoma. We evaluated our system on the BACH challenge dataset of image-wise classification and a small dataset that we used to extend it. Using a train/test split of 75%/25%, we achieved an accuracy rate of 0.99 on the test split for the BACH dataset and 0.96 on that of the extension. On the test of the BACH challenge, we've reached an accuracy of 0.81 which rank us to the 8th out of 51 teams

    The effect of electromechanical coupling on the strain in AlGaN/GaN heterojunction field effect transistors

    Full text link
    The strain in AlGaN/GaN heterojunction field-effect transistors (HFETs) is examined theoretically in the context of the fully-coupled equation of state for piezoelectric materials. Using a simple analytical model, it is shown that, in the absence of a two-dimensional electron gas (2DEG), the out-of-plane strain obtained without electromechanical coupling is in error by about 30% for an Al fraction of 0.3. This result has consequences for the calculation of quantities that depend directly on the strain tensor. These quantities include the eigenstates and electrostatic potential in AlGaN/GaN heterostructures. It is shown that for an HFET, the electromechanical coupling is screened by the 2DEG. Results for the electromechanical model, including the 2DEG, indicate that the standard (decoupled) strain model is a reasonable approximation for HFET calculataions. The analytical results are supported by a self-consistent Schr\"odinger-Poisson calculation that includes the fully-coupled equation of state together with the charge-balance equation.Comment: 6 figures, revte

    Quadratic Bell inequalities as tests for multipartite entanglement

    Full text link
    This letter presents quantum mechanical inequalities which distinguish, for systems of NN spin-\half particles (N>2N>2), between fully entangled states and states in which at most N−1N-1 particles are entangled. These inequalities are stronger than those obtained by Gisin and Bechmann-Pasquinucci [Phys.\ Lett. A {\bf 246}, 1 (1998)] and by Seevinck and Svetlichny [quant-ph/0201046].Comment: 4 pages, including 1 figure. Typo's removed and one proof simplified in revised versio

    Impact of disorder on the 5/2 fractional quantum Hall state

    Full text link
    We compare the energy gap of the \nu=5/2 fractional quantum Hall effect state obtained in conventional high mobility modulation doped quantum well samples with those obtained in high quality GaAs transistors (heterojunction insulated gate field-effect transistors). We are able to identify the different roles that long range and short range disorders play in the 5/2 state and observe that the long range potential fluctuations are more detrimental to the strength of the 5/2 state than short-range potential disorder.Comment: PRL 106, 206806 (2011

    Multiparty multilevel Greenberger-Horne-Zeilinger states

    Get PDF
    The proof of Bell's theorem without inequalities by Greenberger, Horne, and Zeilinger (GHZ) is extended to multiparticle multilevel systems. The proposed procedure generalizes previous partial results and provides an operational characterization of the so-called GHZ states for multiparticle multilevel systems.Comment: REVTeX, 5 pages, 1 figur

    Sufficient conditions for three-particle entanglement and their tests in recent experiments

    Get PDF
    We point out a loophole problem in some recent experimental claims to produce three-particle entanglement. The problem consists in the question whether mixtures of two-particle entangled states might suffice to explain the experimental data. In an attempt to close this loophole, we review two sufficient conditions that distinguish between N-particle states in which all N particles are entangled to each other and states in which only M particles are entangled (with M<N). It is shown that three recent experiments to obtain three-particle entangled states (Bouwmeester et al., Pan et al., and Rauschenbeutel et al.) do not meet these conditions. We conclude that the question whether these experiments provide confirmation of three-particle entanglement remains unresolved. We also propose modifications of the experiments that would make such confirmation feasible.Comment: 16 page

    Quantum correlations are not local elements of reality

    Full text link
    I show a situation of multiparticle entanglement which cannot be explained in the framework of an interpretation of quantum mechanics recently proposed by Mermin. This interpretation is based on the assumption that correlations between subsystems of an individual isolated composed quantum system are real objective local properties of that system.Comment: REVTeX, 3 page
    • 

    corecore