786 research outputs found

    Metastable helium molecules as tracers in superfluid liquid 4^{4}He

    Get PDF
    Metastable helium molecules generated in a discharge near a sharp tungsten tip operated in either pulsed mode or continuous field-emission mode in superfluid liquid 4^{4}He are imaged using a laser-induced-fluorescence technique. By pulsing the tip, a small cloud of He2∗_{2}^{*} molecules is produced. At 2.0 K, the molecules in the liquid follow the motion of the normal fluid. We can determine the normal-fluid velocity in a heat-induced counterflow by tracing the position of a single molecule cloud. As we run the tip in continuous field-emission mode, a normal-fluid jet from the tip is generated and molecules are entrained in the jet. A focused 910 nm pump laser pulse is used to drive a small group of molecules to the vibrational a(1)a(1) state. Subsequent imaging of the tagged a(1)a(1) molecules with an expanded 925 nm probe laser pulse allows us to measure the velocity of the normal fluid. The techniques we developed demonstrate for the first time the ability to trace the normal-fluid component in superfluid helium using angstrom-sized particles.Comment: 4 pages, 7 figures. Submitted to Phys. Rev. Let

    Calibration of liquid argon and neon detectors with 83Krm^{83}Kr^m

    Full text link
    We report results from tests of 83^{83}Krm^{\mathrm{m}}, as a calibration source in liquid argon and liquid neon. 83^{83}Krm^{\mathrm{m}} atoms are produced in the decay of 83^{83}Rb, and a clear 83^{83}Krm^{\mathrm{m}} scintillation peak at 41.5 keV appears in both liquids when filling our detector through a piece of zeolite coated with 83^{83}Rb. Based on this scintillation peak, we observe 6.0 photoelectrons/keV in liquid argon with a resolution of 6% (σ\sigma/E) and 3.0 photoelectrons/keV in liquid neon with a resolution of 19% (σ\sigma/E). The observed peak intensity subsequently decays with the 83^{83}Krm^{\mathrm{m}} half-life after stopping the fill, and we find evidence that the spatial location of 83^{83}Krm^{\mathrm{m}} atoms in the chamber can be resolved. 83^{83}Krm^{\mathrm{m}} will be a useful calibration source for liquid argon and neon dark matter and solar neutrino detectors.Comment: 7 pages, 12 figure
    • …
    corecore