7,401 research outputs found

    Strong coupling in the Kondo problem in the low-temperature region

    Full text link
    The magnetic field dependence of the average spin of a localized electron coupled to conduction electrons with an antiferromagnetic exchange interaction is found for the ground state. In the magnetic field range μH∼0.5Tc\mu H\sim 0.5 T_c (TcT_c is the Kondo temperature) there is an inflection point, and in the strong magnetic field range μH≫Tc\mu H\gg T_c, the correction to the average spin is proportional to (Tc/μH)2(T_c/\mu H)^2. In zero magnetic field, the interaction with conduction electrons also leads to the splitting of doubly degenerate spin impurity states

    Singular values of some modular functions

    Full text link
    We study the properties of special values of the modular functions obtained from Weierstrass P-function at imaginary quadratic points.Comment: 19 pages,corrected typo

    Knight Shift Anomalies in Heavy Electron Materials

    Full text link
    We calculate non-linear Knight Shift KK vs. susceptibility χ\chi anomalies for Ce ions possessing local moments in metals. The ions are modeled with the Anderson Hamiltonian and studied within the non-crossing approximation (NCA). The K−vs.−χK-vs.- \chi non-linearity diminishes with decreasing Kondo temperature T0T_0 and nuclear spin- local moment separation. Treating the Ce ions as an incoherent array in CeSn3_3, we find excellent agreement with the observed Sn K(T)K(T) data.Comment: 4 pages, Revtex, 3 figures available upon request from [email protected]

    Anderson Localization of Bogolyubov Quasiparticles in Interacting Bose-Einstein Condensates

    Full text link
    We study the Anderson localization of Bogolyubov quasiparticles in an interacting Bose-Einstein condensate (with healing length \xi) subjected to a random potential (with finite correlation length \sigma_R). We derive analytically the Lyapunov exponent as a function of the quasiparticle momentum k and we study the localization maximum k_{max}. For 1D speckle potentials, we find that k_{max} is proportional to 1/\xi when \xi is much larger than \sigma_R while k_{max} is proportional to 1/\sigma_R when \xi is much smaller than \sigma_R, and that the localization is strongest when \xi is of the order of \sigma_R. Numerical calculations support our analysis and our estimates indicate that the localization of the Bogolyubov quasiparticles is accessible in current experiments with ultracold atoms.Comment: published version (no significant changes compared to last version

    X(1812) in Quarkonia-Glueball-Hybrid Mixing Scheme

    Full text link
    Recently a JPC=0++J^{PC}=0^{++} (X(1812)) state with a mass near the threshold of ω\omega and ϕ\phi has been observed by the BES collaboration in J/ψ→γωϕJ/\psi \to \gamma \omega \phi decay. It has been suggested that it is a IG=0+I^G = 0^+ state. If it is true, this state fits in a mixing scheme based on quarkonia, glueball and hybrid (QGH) very nicely where five physical states are predicted. Together with the known f0(1370)f_0(1370), f0(1500)f_0(1500), f0(1710)f_0(1710), and f0(1790)f_0(1790) states, X(1812) completes the five members in this family. Using known experimental data on these particles we determine the ranges of the mixing parameters and predict decay properties for X(1812). We also discuss some features which may be able to distinguish between four-quark and hybrid mixing schemes.Comment: 15 pages, 2 figures, 3 table

    Strong correlation effects of the Re 5dd electrons on the metal-insulator transition in Ca2_2FeReO6_6

    Full text link
    We have investigated the electronic structure of polycrystalline Ca2_2FeReO6_6 using photoemission spectroscopy and band-structure calculations within the local-density approximation+UU (LDA+UU) scheme. In valence-band photoemission spectra, a double-peak structure which is characteristic of the metallic double perovskite series has been observed near the Fermi level (EFE_{\rm F}), although it is less distinct compared to the Sr2_2FeMoO6_6 case. The leading near-EFE_{\rm F} structure has a very weak spectral weight at EFE_{\rm F} above the metal-insulator transition (MIT) temperature TMIT_{\rm MI} of ∼\sim140 K, and it loses the EFE_{\rm F} weight below TMIT_{\rm MI}, forming a small energy gap. To reproduce this small energy gap in the calculation, we require a very large effective UU (UeffU_{\rm eff}) for Re (4 eV) in addition to a relatively large UeffU_{\rm eff} for Fe (4 eV). Although the most of the experimental features can be interpreted with the help of the band theory, the overall agreement between the theory and the experiment was not satisfactory. We demonstrate that the effective transfer integral between Fe and Re is actually smaller than that between Fe and Mo in Ca2_2FeMoO6_6, which can explain both MIT and very high ferrimagnetic transition temperature.Comment: 7 pages text, 5 figures, to be pulished in Phys. Rev.

    KINEMATIC ANALYSIS OF THE UPPER LIMB AT DIFFERENT IMPACT HEIGHTS IN BASEBALL BATTING

    Get PDF
    The purpose of this study was to investigate the change in the upper limb motion to three different hitting areas of the strike zone: high, middle, and low. Subjects were ten right-handed male skilled batters of a university baseball team. Data were collected using a three dimensional automatic motion analysis system (Vicon 612). The joint angles of the upper limbs were computed. Comparison of the hitting in the high area vs. low area revealed that to hit the ball in the low area the batter more extended his left elbow, and flexed more his both shoulders and horizontal adduction angle of the left shoulder was large at the phase of the Left upper arm parallel (LUP). At the impact phase he flexed his left elbow more, adduction angle of the left shoulder was small in the case of the high area than the case of the low area. The opposite tendency to the high area was observed in the case of the low area

    Disks around massive young stellar objects: are they common?

    Full text link
    We present K-band polarimetric images of several massive young stellar objects at resolutions ∼\sim 0.1-0.5 arcsec. The polarization vectors around these sources are nearly centro-symmetric, indicating they are dominating the illumination of each field. Three out of the four sources show elongated low-polarization structures passing through the centers, suggesting the presence of polarization disks. These structures and their surrounding reflection nebulae make up bipolar outflow/disk systems, supporting the collapse/accretion scenario as their low-mass siblings. In particular, S140 IRS1 show well defined outflow cavity walls and a polarization disk which matches the direction of previously observed equatorial disk wind, thus confirming the polarization disk is actually the circumstellar disk. To date, a dozen massive protostellar objects show evidence for the existence of disks; our work add additional samples around MYSOs equivalent to early B-type stars.Comment: 9 pages, including 2 figures, 1 table, to appear on ApJ
    • …
    corecore