66 research outputs found

    Gender- and Age-Dependent γ-Secretase Activity in Mouse Brain and Its Implication in Sporadic Alzheimer Disease

    Get PDF
    Alzheimer disease (AD) is an age-related disorder. Aging and female gender are two important risk factors associated with sporadic AD. However, the mechanism by which aging and gender contribute to the pathogenesis of sporadic AD is unclear. It is well known that genetic mutations in γ-secretase result in rare forms of early onset AD due to the aberrant production of Aβ42 peptides, which are the major constituents of senile plaques. However, the effect of age and gender on γ-secretase has not been fully investigated. Here, using normal wild-type mice, we show mouse brain γ-secretase exhibits gender- and age-dependent activity. Both male and female mice exhibit increased Aβ42∶Aβ40 ratios in aged brain, which mimics the effect of familial mutations of Presenilin-1, Presenlin-2, and the amyloid precursor protein on Aβ production. Additionally, female mice exhibit much higher γ-secretase activity in aged brain compared to male mice. Furthermore, both male and female mice exhibit a steady decline in Notch1 γ-secretase activity with aging. Using a small molecule affinity probe we demonstrate that male mice have less active γ-secretase complexes than female mice, which may account for the gender-associated differences in activity in aged brain. These findings demonstrate that aging can affect γ-secretase activity and specificity, suggesting a role for γ-secretase in sporadic AD. Furthermore, the increased APP γ-secretase activity seen in aged females may contribute to the increased incidence of sporadic AD in women and the aggressive Aβ plaque pathology seen in female mouse models of AD. In addition, deceased Notch γ-secretase activity may also contribute to neurodegeneration. Therefore, this study implicates altered γ-secretase activity and specificity as a possible mechanism of sporadic AD during aging

    Alzheimer's Disease-Linked Mutations in Presenilin-1 Result in a Drastic Loss of Activity in Purified γ-Secretase Complexes

    Get PDF
    BACKGROUND: Mutations linked to early onset, familial forms of Alzheimer's disease (FAD) are found most frequently in PSEN1, the gene encoding presenilin-1 (PS1). Together with nicastrin (NCT), anterior pharynx-defective protein 1 (APH1), and presenilin enhancer 2 (PEN2), the catalytic subunit PS1 constitutes the core of the γ-secretase complex and contributes to the proteolysis of the amyloid precursor protein (APP) into amyloid-beta (Aβ) peptides. Although there is a growing consensus that FAD-linked PS1 mutations affect Aβ production by enhancing the Aβ1-42/Aβ1-40 ratio, it remains unclear whether and how they affect the generation of APP intracellular domain (AICD). Moreover, controversy exists as to how PS1 mutations exert their effects in different experimental systems, by either increasing Aβ1-42 production, decreasing Aβ1-40 production, or both. Because it could be explained by the heterogeneity in the composition of γ-secretase, we purified to homogeneity complexes made of human NCT, APH1aL, PEN2, and the pathogenic PS1 mutants L166P, ΔE9, or P436Q. METHODOLOGY/PRINCIPAL FINDINGS: We took advantage of a mouse embryonic fibroblast cell line lacking PS1 and PS2 to generate different stable cell lines overexpressing human γ-secretase complexes with different FAD-linked PS1 mutations. A multi-step affinity purification procedure was used to isolate semi-purified or highly purified γ-secretase complexes. The functional characterization of these complexes revealed that all PS1 FAD-linked mutations caused a loss of γ-secretase activity phenotype, in terms of Aβ1-40, Aβ1-42 and APP intracellular domain productions in vitro. CONCLUSION/SIGNIFICANCE: Our data support the view that PS1 mutations lead to a strong γ-secretase loss-of-function phenotype and an increased Aβ1-42/Aβ1-40 ratio, two mechanisms that are potentially involved in the pathogenesis of Alzheimer's disease

    Comet Surface Modelling

    No full text

    Origin of Comets in the Extended Circumsolar Disk

    No full text

    Regular grap and ban structure in disks of colliding particles

    No full text

    Kometenforschung

    No full text
    • …
    corecore