8 research outputs found
Spin-driven Phase Transitions in ZnCrSe and ZnCrS Probed by High Resolution Synchrotron X-ray and Neutron Powder Diffraction
The crystal and magnetic structures of the spinel compounds ZnCrS and
ZnCrSe were investigated by high resolution powder synchrotron and
neutron diffraction. ZnCrSe exhibits a first order phase transition at
K into an incommensurate helical magnetic structure. Magnetic
fluctuations above are coupled to the crystal lattice as manifested by
negative thermal expansion. Both, the complex magnetic structure and the
anomalous structural behavior can be related to magnetic frustration.
Application of an external magnetic field shifts the ordering temperature and
the regime of negative thermal expansion towards lower temperatures. Thereby,
the spin ordering changes into a conical structure. ZnCrS shows two
magnetic transitions at K and K that are accompanied by
structural phase transitions. The crystal structure transforms from the cubic
spinel-type (space group \={3}) at high temperatures in the paramagnetic
state, via a tetragonally distorted intermediate phase (space group /
) for into a low temperature orthorhombic phase
(space group ) for . The cooperative displacement of
sulfur ions by exchange striction is the origin of these structural phase
transitions. The low temperature structure of ZnCrS is identical to the
orthorhombic structure of magnetite below the Verwey transition. When applying
a magnetic field of 5 T the system shows an induced negative thermal expansion
in the intermediate magnetic phase as observed in ZnCrSe.Comment: 11 pages, 13 figures, to be published in PR
20.8% Slot-Die Coated MAPbI3 Perovskite Solar Cells by Optimal DMSO-Content and Age of 2-ME Based Precursor Inks
Solar cells incorporating metal-halide perovskite (MHP) semiconductors are continuing to break efficiency records for solution-processed solar cell devices. Scaling MHP-based devices to larger area prototypes requires the development and optimization of scalable process technology and ink formulations that enable reproducible coating results. It is demonstrated that the power conversion efficiency (PCE) of small-area methylammonium lead iodide (MAPbI3) devices, slot-die coated from a 2-methoxy-ethanol (2-ME) based ink with dimethyl-sulfoxide (DMSO) used as an additive depends on the amount of DMSO and age of the ink formulation. When adding 12 mol% of DMSO, small-area devices of high performance (20.8%) are achieved. The effect of DMSO content and age on the thin film morphology and device performance through in situ X-ray diffraction and small-angle X-ray scattering experiments is rationalized. Adding a limited amount of DMSO prevents the formation of a crystalline intermediate phase related to MAPbI3 and 2-ME (MAPbI3-2-ME) and induces the formation of the MAPbI3 perovskite phase. Higher DMSO content leads to the precipitation of the (DMSO)2MA2Pb3I8 intermediate phase that negatively affects the thin-film morphology. These results demonstrate that rational insights into the ink composition and process control are critical to enable reproducible large-scale manufacturing of MHP-based devices for commercial applications
Compositional and Interfacial Engineering Yield High-Performance and Stable p-i-n Perovskite Solar Cells and Mini-Modules
Through the optimization of the perovskite precursor composition and interfaces to selective contacts, we achieved a p-i-n-type perovskite solar cell (PSC) with a 22.3% power conversion efficiency (PCE). This is a new performance record for a PSC with an absorber bandgap of 1.63 eV. We demonstrate that the high device performance originates from a synergy between (1) an improved perovskite absorber quality when introducing formamidinium chloride (FACl) as an additive in the "triple cation"Cs0.05FA0.79MA0.16PbBr0.51I2.49 (Cs-MAFA) perovskite precursor ink, (2) an increased open-circuit voltage, VOC, due to reduced recombination losses when using a lithium fluoride (LiF) interfacial buffer layer, and (3) high-quality hole-selective contacts with a self-assembled monolayer (SAM) of [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) on ITO electrodes. While all devices exhibit a high performance after fabrication, as determined from current-density voltage, J-V, measurements, substantial differences in device performance become apparent when considering longer-term stability data. A reduced long-term stability of devices with the introduction of a LiF interlayer is compensated for by using FACl as an additive in the metal-halide perovskite thin-film deposition. Optimized devices maintained about 80% of the initial average PCE during maximum power point (MPP) tracking for >700 h. We scaled the optimized device architecture to larger areas and achieved fully laser patterned series-interconnected mini-modules with a PCE of 19.4% for a 2.2 cm2 active area. A robust device architecture and reproducible deposition methods are fundamental for high performance and stable large-area single junction and tandem modules based on PSCs