13,221 research outputs found
Surface-gravity determinations for main-sequence B stars
Astronomical models for computing surface gravity of B stars from hydrogen line equivalent width
Estrone and estradiol concentrations in human ovaries, testes, and adrenals during the first two years of life
To determine the origin of estrogens in infant blood, we measured estrone (E1) and estradiol (E2) in the gonads of 50 girls and 64 boys who died suddenly between birth and 2 yr of age as well as in the adrenals of 18 of these infant girls and 16 of the boys. In the adrenals, E1 [median, 2.8 ng/g (10.4 pmol/g); range, 1.1-4.8 ng/g (4.1- 17.8 pmol/g)] and E2 [median, 3.0 ng/g (10.9 pmol/g); range, 1.2-5.3 ng/g (4.4-19.5 pmol/g)] were found in similar concentrations and were independent of age and sex. In the gonads, E2 was the major estrogen, but the concentrations differed markedly between the sexes; E2 exceeded E1 almost 10-fold in the ovaries and 2-fold in the testes. On the average, the gonads of the infant girls had 5 times more E2 and 2 times more E1 than those of the boys. As in plasma, E2 concentrations were highest in the ovaries of 1- to 6-month-old girls [median, 10.5 ng/g (38.5 pmol/g); range, 1.1-55.1 ng/g (4.0-202.0 pmol/g)] and in testes of 1- to 3-month-old boys [median, 1.8 ng/g (6.6 pmol/g); range, 0.6- 6.4 ng/g (2.3-23.5 pmol/g)]. Ovarian E2 concentrations declined to less than 3.0 ng/g (11.0 pmol/g) by the end of the first year of life, and testicular E2 declined to less than 1.0 ng/g (3.7 pmol/g) after only 6 months of age. Gonadal estrogen concentrations paralleled changes in gonadal morphology. Ovarian weights varied in a pattern of rise and fall similar to that of ovarian E2 concentrations; the biggest ovaries contained multiple macroscopic cysts. Testicular E2 closely correlated with Leydig cell development and testicular testosterone concentrations. We infer, therefore, that the surge of plasma E2 in infant girls originates from ovarian follicles and that of boys from testicular Leydig cells, and that these both occur as a result of the postnatal surge in gonadotropin secretion. The basal plasma E1 and E2 pool, however, is derived from the adrenals and remains at a comparatively constant level in both sexe
Bright crater outflows: Possible emplacement mechanisms
Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree
Stress Measurement in Railroad Rail using Ultrasonic and Magnetic Techniques
The nondestructive measurement of stress is a continuing concern to the railroad industry. Severe web cracking tendencies in some rails have been linked to high residual stresses created during rail production. Rails are plastically deformed during the final stage of production, known as roller-straightening. While most rails have the same characteristic stress distribution afforded by this process, safety concerns warrant the detection of pronounced stress levels that would lead to exaggerated cracking behavior
Impact craters on Venus: An overview from Magellan observations
Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
GRB 030329: 3 years of radio afterglow monitoring
Radio observations of gamma-ray burst (GRB) afterglows are essential for our
understanding of the physics of relativistic blast waves, as they enable us to
follow the evolution of GRB explosions much longer than the afterglows in any
other wave band. We have performed a three-year monitoring campaign of GRB
030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant
Metrewave Radio Telescope (GMRT). Our observations, combined with observations
at other wavelengths, have allowed us to determine the GRB blast wave physical
parameters, such as the total burst energy and the ambient medium density, as
well as investigate the jet nature of the relativistic outflow. Further, by
modeling the late-time radio light curve of GRB 030329, we predict that the
Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of
similar GRBs, and constrain the physics of the blast wave during its
non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241,
proceedings of the Royal Society Scientific Discussion Meeting, London,
September 200
Radio Emission from the Composite Supernova Remnant G326.3-1.8 (MSH15-56)
High resolution radio observations of the composite supernova remnant (SNR)
G326.3-1.8 or MSH 15-56 with the Australia Telescope Compact Array show details
of both the shell and the bright plerion which is offset about 1/3 of the
distance from the center of the SNR to the shell. The shell appears to be
composed of thin filaments, typical of older shell SNRs. The central part of
the elongated plerion is composed of a bundle of parallel ridges which bulge
out at the ends and form a distinct ring structure on the northwestern end. The
magnetic field with a strength of order 45 microGauss, is directed along the
axis of the ridges but circles around the northwestern ring. This plerion is
large and bright in the radio but is not detected in x-ray or optical
wavelengths. There is, however, a faint hard x-ray feature closer to the shell
outside the plerion. Perhaps if the supernova explosion left a rapidly moving
magnetar with large energy input but initially rapid decay of both relativistic
particles and magnetic field, the observed differences with wavelength could be
explained.Comment: 15 pages, 10 figures, accepted by Ap
- …