80,604 research outputs found
-symmetries for discrete equations
Following the usual definition of -symmetries of differential
equations, we introduce the analogous concept for difference equations and
apply it to some examples.Comment: 10 page
Generic guide concepts for the European Spallation Source
The construction of the European Spallation Source (ESS) faces many
challenges from the neutron beam transport point of view: The spallation source
is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy,
and yet the requirements in instrument background suppression relative to
measured signal vary between 10 and 10. The energetic particles,
particularly above 20 MeV, which are expected to be produced in abundance in
the target, have to be filtered in order to make the beamlines safe,
operational and provide good quality measurements with low background.
We present generic neutron guides of short and medium length instruments
which are optimized for good performance at minimal cost. Direct line of sight
to the source is avoided twice, with either the first point out of line of
sight or both being inside the bunker (20\,m) to minimize shielding costs.
These guide geometries are regarded as a baseline to define standards for
instruments to be constructed at ESS. They are used to find commonalities and
develop principles and solutions for common problems. Lastly, we report the
impact of employing the over-illumination concept to mitigate losses from
random misalignment passively, and that over-illumination should be used
sparingly in key locations to be effective. For more widespread alignment
issues, a more direct, active approach is likely to be needed
Nonequilibrium Phase Transitions in Directed Small-World Networks
Many social, biological, and economic systems can be approached by complex
networks of interacting units. The behaviour of several models on small-world
networks has recently been studied. These models are expected to capture the
essential features of the complex processes taking place on real networks like
disease spreading, formation of public opinion, distribution of wealth, etc. In
many of these systems relations are directed, in the sense that links only act
in one direction (outwards or inwards). We investigate the effect of directed
links on the behaviour of a simple spin-like model evolving on a small-world
network. We show that directed networks may lead to a highly nontrivial phase
diagram including first and second-order phase transitions out of equilibrium.Comment: 4 pages, RevTeX format, 4 postscript figs, uses eps
The Quasar-frame Velocity Distribution of Narrow CIV Absorbers
We report on a survey for narrow (FWHM < 600 km/s) CIV absorption lines in a
sample of bright quasars at redshifts in the Sloan Digital
Sky Survey. Our main goal is to understand the relationship of narrow CIV
absorbers to quasar outflows and, more generally, to quasar environments. We
determine velocity zero-points using the broad MgII emission line, and then
measure the absorbers' quasar-frame velocity distribution. We examine the
distribution of lines arising in quasar outflows by subtracting model fits to
the contributions from cosmologically intervening absorbers and absorption due
to the quasar host galaxy or cluster environment. We find a substantial number
( per cent) of absorbers with REW \AA in the velocity range
+750 km/s \la v \la +12000 km/s are intrinsic to the AGN outflow. This
`outflow fraction' peaks near km/s with a value of . At velocities below km/s the incidence
of outflowing systems drops, possibly due to geometric effects or to the
over-ionization of gas that is nearer the accretion disk. Furthermore, we find
that outflow-absorbers are on average broader and stronger than
cosmologically-intervening systems. Finally, we find that per cent of
the quasars in our sample exhibit narrow, outflowing CIV absorption with REW \AA, slightly larger than that for broad absorption line systems.Comment: 11 pages, 9 figures, accepted for publication in MNRA
Improving photon-hadron discrimination based on cosmic ray surface detector data
The search for photons at EeV energies and beyond has considerable
astrophysical interest and will remain one of the key challenges for ultra-high
energy cosmic ray (UHECR) observatories in the near future. Several upper
limits to the photon flux have been established since no photon has been
unambiguously observed up to now. An improvement in the reconstruction
efficiency of the photon showers and/or better discrimination tools are needed
to improve these limits apart from an increase in statistics. Following this
direction, we analyze in this work the ability of the surface parameter Sb,
originally proposed for hadron discrimination, for photon search.
Semi-analytical and numerical studies are performed in order to optimize Sb
for the discrimination of photons from a proton background in the energy range
from 10^18.5 to 10^19.6 eV. Although not shown explicitly, the same analysis
has been performed for Fe nuclei and the corresponding results are discussed
when appropriate. The effects of different array geometries and the
underestimation of the muon component in the shower simulations are analyzed,
as well as the Sb dependence on primary energy and zenith angle.Comment: 9 pages, 19 Figures. Accepted in Astroparticle Physics on May 31th,
201
The emerging population of pulsar wind nebulae in hard X-rays
The hard X-ray synchrotron emission from pulsar wind nebulae (PWNe) probes
energetic particles, closely related to the pulsar injection power at the
present time. INTEGRAL has disclosed the yet poorly known population of hard
X-ray pulsar/PWN systems. We summarize the properties of the class, with
emphasys on the first hard X-ray bow-shock (CTB 80 powered by PSR B1951+32),
and highlight some prospects for the study of Pulsar Wind Nebulae with the
Simbol-X mission.Comment: Proceedings of the 2nd Simbol-X Symposium, AIP Conf. Proc. Series,
Eds. P. Ferrando and J. Rodriguez (4 pages, 2 figures
- …
