4,181 research outputs found
Computational methods for internal flows with emphasis on turbomachinery
Current computational methods for analyzing flows in turbomachinery and other related internal propulsion components are presented. The methods are divided into two classes. The inviscid methods deal specifically with turbomachinery applications. Viscous methods, deal with generalized duct flows as well as flows in turbomachinery passages. Inviscid methods are categorized into the potential, stream function, and Euler aproaches. Viscous methods are treated in terms of parabolic, partially parabolic, and elliptic procedures. Various grids used in association with these procedures are also discussed
Temperature Fluctuations driven by Magnetorotational Instability in Protoplanetary Disks
The magnetorotational instability (MRI) drives magnetized turbulence in
sufficiently ionized regions of protoplanetary disks, leading to mass
accretion. The dissipation of the potential energy associated with this
accretion determines the thermal structure of accreting regions. Until
recently, the heating from the turbulence has only been treated in an
azimuthally averaged sense, neglecting local fluctuations. However, magnetized
turbulence dissipates its energy intermittently in current sheet structures. We
study this intermittent energy dissipation using high resolution numerical
models including a treatment of radiative thermal diffusion in an optically
thick regime. Our models predict that these turbulent current sheets drive
order unity temperature variations even where the MRI is damped strongly by
Ohmic resistivity. This implies that the current sheet structures where energy
dissipation occurs must be well resolved to correctly capture the flow
structure in numerical models. Higher resolutions are required to resolve
energy dissipation than to resolve the magnetic field strength or accretion
stresses. The temperature variations are large enough to have major
consequences for mineral formation in disks, including melting chondrules,
remelting calcium-aluminum rich inclusions, and annealing silicates; and may
drive hysteresis: current sheets in MRI active regions could be significantly
more conductive than the remainder of the disk.Comment: 16 pages, 13 figures, ApJ In Press, updated to match proof
Diagnostics and control of wavenumber stability and purity of tunable diode lasers relevant to their use as local oscillators in heterodyne systems
Initial operation of the tunable diode lasers (TDL) showed that it was not possible to adjust the wavenumber to one selected a priori in the TDL tuning range. During operation, the operating point would change by 0.1/cm over the longer term with even larger changes occurring during some thermal cycles. Most changes during thermal cycling required using lower temperatures and higher currents to reach the former wavenumber (when it could be reached). In many cases, an operating point could be selected by changing TDL current and temperature to give both the desired wavenumber and most of the power in a single mode. The selection procedure had to be used after each thermal cycling. Wavenumber nonlinearities of about 10% over a 0.5 cm tuning range were observed. Diagnostics of the single mode selected by a grating monochromator showed wavenumber fine structure under certain operating conditions. The characteristics due to the TDL environment included short term wavenumber stability, the instrument lineshape function, and intermediate term wavenumber stability
Short-term effects of deep ploughing on soil C stocks following renewal of a dairy pasture in New Zealand
In New Zealand’s high producing permanent pastures the topsoil constitutes a large reservoir of soil organic carbon (SOC), which shows a marked stratification with depth. As consequence, sub-surface layers can contain 10 times less carbon than the surface soil. In permanent pastures with high carbon inputs, the formation and decomposition of these surface SOC stocks are often at equilibrium and C storage shows little change over time. Pastoral based dairy systems utilising ryegrass plus clover cultivars require renewal every 7-10 years to avoid reversion to less productive grasses. This may involve spring cultivation (either no-till, shallow till or full cultivation), summer forage cropping and autumn re-grassing. It has been hypothesised that SOC stocks can be increased by inverting the soil profile at pasture renewal through infrequent (once in 25-30 years) deep mouldboard ploughing (up to 30 cm depth). Increased C sequestration occurs when the new grass quickly rebuilds SOC stocks in the new topsoil (exposed low C sub-soil) at a rate faster than the decomposition of SOC in the rich former topsoil transferred to depth (now below 15 cm). However, benefits form accelerated C storage may be offset if crop and pasture production is adversely affected by the ploughing event (e.g., as result of compaction or excessive drainage). Hence, the aim of this work was to assess the short-term effects of infrequent inversion tillage of long-term New Zealand pastoral-based dairy soils under summer crop management and autumn re-grassing. An imperfectly drained Typic Fragiaqualf under dairy grazing was deep ploughed (approx. 25 cm) and re-sown with turnip in October 2016; other treatments included were shallow (< 10 cm) cultivation and no-till. The site was core sampled (0-40 cm) before cultivation and after 5 months of turnip growth to assess changes in SOC. Plant growth, herbage quality, and nutrient leaching were monitored during the 5-month period; root growth was assessed at the end of the crop rotation. Full cultivation transferred SOC below 10 cm depth, as expected. Soil bulk density decreased whereas root mass increased (10-20 cm depth; P < 0.05) under deep cultivation only. Besides, losses of mineral N were attenuated under deep tillage, resulting in a relative increase in crop yield. The potential for infrequent inversion tillage increasing soil C sequestration as a greenhouse gas (GHG) mitigation tool is currently being tested at other sites in New Zealand
Doping Evolution of Magnetic Order and Magnetic Excitations in (SrLa)IrO
We use resonant elastic and inelastic X-ray scattering at the Ir- edge
to study the doping-dependent magnetic order, magnetic excitations and
spin-orbit excitons in the electron-doped bilayer iridate
(SrLa)IrO (). With increasing
doping , the three-dimensional long range antiferromagnetic order is
gradually suppressed and evolves into a three-dimensional short range order
from to , followed by a transition to two-dimensional short range
order between and . Following the evolution of the
antiferromagnetic order, the magnetic excitations undergo damping, anisotropic
softening and gap collapse, accompanied by weakly doping-dependent spin-orbit
excitons. Therefore, we conclude that electron doping suppresses the magnetic
anisotropy and interlayer couplings and drives
(SrLa)IrO into a correlated metallic state hosting
two-dimensional short range antiferromagnetic order and strong
antiferromagnetic fluctuations of moments, with
the magnon gap strongly suppressed.Comment: 6 Pages, 3 Figures, with supplementary in Sourc
Seeding systems and cropping trends in Saskatchewan results of a PFRA survey, 1997-2002
Non-Peer ReviewedFrom 1997 to 2002, Agriculture & Agri-Food Canada’s (AAFC) PFRA Branch conducted a
survey of over 4000 annually cropped fields in Saskatchewan. Each year the same fields were
visited shortly after crop emergence to collect information on crop type, row spacing, opener
type, packing system, amount of previous crop residue, orientation of previous crop stubble, and
adoption of low soil disturbance seeding. Key results are the increasing trend toward lower soil
disturbance seeding, and the high incidence of pulse crops associated with low disturbance
seeding. In depth analysis of trends on individual fields suggest that very few producers are able
to maintain low disturbance seeding every year on the same field. This suggests that some
flexibility is required to allow for periodic soil disturbance to address issues such as perennial
weeds
Evaluational adjectives
This paper demarcates a theoretically interesting class of "evaluational adjectives." This class includes predicates expressing various kinds of normative and epistemic evaluation, such as predicates of personal taste, aesthetic adjectives, moral adjectives, and epistemic adjectives, among others. Evaluational adjectives are distinguished, empirically, in exhibiting phenomena such as discourse-oriented use, felicitous embedding under the attitude verb `find', and sorites-susceptibility in the comparative form. A unified degree-based semantics is developed: What distinguishes evaluational adjectives, semantically, is that they denote context-dependent measure functions ("evaluational perspectives")—context-dependent mappings to degrees of taste, beauty, probability, etc., depending on the adjective. This perspective-sensitivity characterizing the class of evaluational adjectives cannot be assimilated to vagueness, sensitivity to an experiencer argument, or multidimensionality; and it cannot be demarcated in terms of pretheoretic notions of subjectivity, common in the literature. I propose that certain diagnostics for "subjective" expressions be analyzed instead in terms of a precisely specified kind of discourse-oriented use of context-sensitive language. I close by applying the account to `find x PRED' ascriptions
Neonatal abstinence syndrome.
A 12 month review of infants admitted with neonatal abstinence syndrome to a neonatal intensive care unit was undertaken. The relationship of maternal drug abuse to symptoms, the effectiveness of pharmacologic agents in controlling symptoms and the length of inpatient stay were investigated.
A retrospective review of maternal and infant records was performed. Those infants with a serial Finnegan score greater than 8 were treated. Pharmacologic treatment was oral morphine sulphate (0.2 mg 4-6 hourly), phenobarbitone (3-7 mgs/kg/day), or combination of the above. 43 infants were admitted to the hospital during the year. The average maternal age was 24.6 years, (18-34 years). Drug use volunteered by the mothers was methadone alone in 6 cases, methadone and benzodiazepines in 14, methadone and heroin and benzodiazepines in 7, methadone and heroin in 10, heroin alone in 2, and other multiple drug use including oral morphine sulphate, dothiepin and cannabis in 4.
Average gestational age was 40.3 (35-42 weeks). The average birthweight was 2.81 kgs (1.89-3.91 kgs). Time to onset of withdrawal symptoms was 2.8 (1-13) days. The duration of pharmacologic treatment (oral morphine sulphate and/or phenobarbitone) was 21.8 (1-62) days. The total hospital stay for the 43 infants was 1,011 days. This study confirms that polydrug abuse is the commonest type of drug abuse in Dublin. The duration of withdrawal symptoms is loosely related to drug type, but increasing duration of symptoms is noted for infants exposed to benzodiazepines. Our experience would favour the use of morphine sulphate to treat pure opiate withdrawal symptoms. Over the 12-month period, there was an average occupancy of 3 beds per day in the paediatric department
Resolving the nature of electronic excitations in resonant inelastic x-ray scattering
The study of elementary bosonic excitations is essential toward a complete
description of quantum electronic solids. In this context, resonant inelastic
X-ray scattering (RIXS) has recently risen to becoming a versatile probe of
electronic excitations in strongly correlated electron systems. The nature of
the radiation-matter interaction endows RIXS with the ability to resolve the
charge, spin and orbital nature of individual excitations. However, this
capability has been only marginally explored to date. Here, we demonstrate a
systematic method for the extraction of the character of excitations as
imprinted in the azimuthal dependence of the RIXS signal. Using this novel
approach, we resolve the charge, spin, and orbital nature of elastic
scattering, (para-)magnon/bimagnon modes, and higher energy dd excitations in
magnetically-ordered and superconducting copper-oxide perovskites (Nd2CuO4 and
YBa2Cu3O6.75). Our method derives from a direct application of scattering
theory, enabling us to deconstruct the complex scattering tensor as a function
of energy loss. In particular, we use the characteristic tensorial nature of
each excitation to precisely and reliably disentangle the charge and spin
contributions to the low energy RIXS spectrum. This procedure enables to
separately track the evolution of spin and charge spectral distributions in
cuprates with doping. Our results demonstrate a new capability that can be
integrated into the RIXS toolset, and that promises to be widely applicable to
materials with intertwined spin, orbital, and charge excitations
- …