1,585 research outputs found
Pump frequency resonances for light-induced incipient superconductivity in YBaCuO
Optical excitation in the cuprates has been shown to induce transient
superconducting correlations above the thermodynamic transition temperature,
, as evidenced by the terahertz frequency optical properties in the
non-equilibrium state. In YBaCuO this phenomenon has so far
been associated with the nonlinear excitation of certain lattice modes and the
creation of new crystal structures. In other compounds, like
LaBaCuO, similar effects were reported also for excitation at
near infrared frequencies, and were interpreted as a signature of the melting
of competing orders. However, to date it has not been possible to
systematically tune the pump frequency widely in any one compound, to
comprehensively compare the frequency dependent photo-susceptibility for this
phenomenon. Here, we make use of a newly developed optical parametric
amplifier, which generates widely tunable high intensity femtosecond pulses, to
excite YBaCuO throughout the entire optical spectrum (3 - 750
THz). In the far-infrared region (3 - 25 THz), signatures of non-equilibrium
superconductivity are induced only for excitation of the 16.4 THz and 19.2 THz
vibrational modes that drive -axis apical oxygen atomic positions. For
higher driving frequencies (25 - 750 THz), a second resonance is observed
around the charge transfer band edge at ~350 THz. These observations highlight
the importance of coupling to the electronic structure of the CuO planes,
either mediated by a phonon or by charge transfer.Comment: 47 pages, 21 figures, 2 table
Functional Relaxation and Guided Imagery as Complementary Therapy in Asthma: A Randomized Controlled Clinical Trial
Background: Asthma is a frequently disabling and almost invariably distressing disease that has a high overall prevalence. Although relaxation techniques and hypnotherapeutic interventions have proven their effectiveness in numerous trials, relaxation therapies are still not recommended in treatment guidelines due to a lack of methodological quality in many of the trials. Therefore, this study aims to investigate the efficacy of the brief relaxation technique of functional relaxation (FR) and guided imagery (GI) in adult asthmatics in a randomized controlled trial. Methods: 64 patients with extrinsic bronchial asthma were treated over a 4-week period and assessed at baseline, after treatment and after 4 months, for follow-up. 16 patients completed FR, 14 GI, 15 both FR and GI (FR/GI) and 13 received a placebo relaxation technique as the control intervention (CI). The forced expiratory volume in the first second (FEV 1) as well as the specific airway resistance (sR(aw)) were employed as primary outcome measures. Results: Participation in FR, GI and FR/GI led to increases in FEV 1 (% predicted) of 7.6 +/- 13.2, 3.3 +/- 9.8, and 8.3 +/- 21.0, respectively, as compared to -1.8 +/- 11.1 in the CI group at the end of the therapy. After follow-up, the increases in FEV 1 were 6.9 +/- 10.3 in the FR group, 4.4 +/- 7.3 in the GI and 4.5 +/- 8.1 in the FR/GI, compared to -2.8 +/- 9.2 in the CI. Improvements in sR(aw) (% predicted) were in keeping with the changes in FEV 1 in all groups. Conclusions: Our study confirms a positive effect of FR on respiratory parameters and suggests a clinically relevant long-term benefit from FR as a nonpharmacological and complementary therapy treatment option. Copyright (C) 2009 S. Karger AG, Base
Superconducting Superstructure for the TESLA Collider
We discuss the new layout of a cavity chain (superstructure) allowing, we
hope, significant cost reduction of the RF system of both linacs of the TESLA
linear collider. The proposed scheme increases the fill factor and thus makes
an effective gradient of an accelerator higher. We present mainly computations
we have performed up to now and which encouraged us to order the copper model
of the scheme, still keeping in mind that experiments with a beam will be
necessary to prove if the proposed solution can be used for the acceleration.Comment: 11 page
High magnetic field studies of the Vortex Lattice structure in YBa2Cu3O7
We report on small angle neutron scattering measurements of the vortex
lattice in twin-free YBa2Cu3O7, extending the previously investigated maximum
field of 11~T up to 16.7~T with the field applied parallel to the c axis. This
is the first microscopic study of vortex matter in this region of the
superconducting phase. We find the high field VL displays a rhombic structure,
with a field-dependent coordination that passes through a square configuration,
and which does not lock-in to a field-independent structure. The VL pinning
reduces with increasing temperature, but is seen to affect the VL correlation
length even above the irreversibility temperature of the lattice structure. At
high field and temperature we observe a melting transition, which appears to be
first order, with no detectable signal from a vortex liquid above the
transition
Lattice dynamical signature of charge density wave formation in underdoped YBa2Cu3O6+x
We report a detailed Raman scattering study of the lattice dynamics in
detwinned single crystals of the underdoped high temperature superconductor
YBa2Cu3O6+x (x=0.75, 0.6, 0.55 and 0.45). Whereas at room temperature the
phonon spectra of these compounds are similar to that of optimally doped
YBa2Cu3O6.99, additional Raman-active modes appear upon cooling below ~170-200
K in underdoped crystals. The temperature dependence of these new features
indicates that they are associated with the incommensurate charge density wave
state recently discovered using synchrotron x-ray scattering techniques on the
same single crystals. Raman scattering has thus the potential to explore the
evolution of this state under extreme conditions.Comment: 12 pages, 11 figure
Recommended from our members
Evolution of the eyes of vipers with and without infrared-sensing pit organs
We examined lens and brille transmittance, photoreceptors, visual pigments, and visual opsin gene sequences of viperid snakes with and without infrared-sensing pit organs. Ocular media transmittance is high in both groups. Contrary to previous reports, small as well as large single cones occur in pit vipers. Non-pit vipers differ from pit vipers in having a twotiered retina, but few taxa have been examined for this poorly understood feature. All vipers sampled express rh1, sws1 and lws visual opsin genes. Opsin spectral tuning varies but not in accordance with the presence/absence of pit organs, and not always as predicted from gene sequences. The visual opsin genes were generally under purifying selection, with positive selection at spectral tuning amino acids in RH1 and SWS1 opsins, and at retinal pocket stabilization sites in RH1 or LWS (and without substantial differences between pit and nonpit vipers). Lack of evidence for sensory trade-off between viperid eyes (in the aspects examined) and pit organs might be explained by the high degree of neural integration of vision and infrared detection; the latter representing an elaboration of an existing sense with addition of a novel sense organ, rather than involving the evolution of a wholly novel sensory system
Real-time optical manipulation of cardiac conduction in intact hearts
Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an allâoptical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wideâfield mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in freeârun mode with submillisecond temporal resolution or in a closedâloop fashion: a tailored hardware and software platform allowed realâtime intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Realâtime intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for realâtime resynchronization therapy and cardiac defibrillation. Furthermore, the closedâloop approach was applied to simulate a reâentrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proofâofâconcept that a realâtime optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart
- âŠ