7,606 research outputs found

    Ultrasoft NLL Running of the Nonrelativistic O(v) QCD Quark Potential

    Full text link
    Using the nonrelativistic effective field theory vNRQCD, we determine the contribution to the next-to-leading logarithmic (NLL) running of the effective quark-antiquark potential at order v (1/mk) from diagrams with one potential and two ultrasoft loops, v being the velocity of the quarks in the c.m. frame. The results are numerically important and complete the description of ultrasoft next-to-next-to-leading logarithmic (NNLL) order effects in heavy quark pair production and annihilation close to threshold.Comment: 25 pages, 7 figures, 3 tables; minor modifications, typos corrected, references added, footnote adde

    Origin of the structural phase transition in Li7La3Zr2O12

    Full text link
    Garnet-type Li7La3Zr2O12 (LLZO) is a solid electrolyte material with a low-conductivity tetragonal and a high-conductivity cubic phase. Using density-functional theory and variable cell shape molecular dynamics simulations, we show that the tetragonal phase stability is dependent on a simultaneous ordering of the Li ions on the Li sublattice and a volume-preserving tetragonal distortion that relieves internal structural strain. Supervalent doping introduces vacancies into the Li sublattice, increasing the overall entropy and reducing the free energy gain from ordering, eventually stabilizing the cubic phase. We show that the critical temperature for cubic phase stability is lowered as Li vacancy concentration (dopant level) is raised and that an activated hop of Li ions from one crystallographic site to another always accompanies the transition. By identifying the relevant mechanism and critical concentrations for achieving the high conductivity phase, this work shows how targeted synthesis could be used to improve electrolytic performance

    Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

    Get PDF
    Many modern nonlinear control methods aim to endow systems with guaranteed properties, such as stability or safety, and have been successfully applied to the domain of robotics. However, model uncertainty remains a persistent challenge, weakening theoretical guarantees and causing implementation failures on physical systems. This paper develops a machine learning framework centered around Control Lyapunov Functions (CLFs) to adapt to parametric uncertainty and unmodeled dynamics in general robotic systems. Our proposed method proceeds by iteratively updating estimates of Lyapunov function derivatives and improving controllers, ultimately yielding a stabilizing quadratic program model-based controller. We validate our approach on a planar Segway simulation, demonstrating substantial performance improvements by iteratively refining on a base model-free controller

    Top quark precision physics at the International Linear Collider

    Full text link
    Top quark production in the process e+ettˉe^+e^- \rightarrow t\bar{t} at a future linear electron positron collider with polarized beams is a powerful tool to determine the scale of new physics. Studies at the \ttbar threshold will allow for precise determination of the top quark mass in a well defined theoretical framework. At higher energies vector, axial vector and tensorial CP conserving couplings can be separately determined for the photon and the Z0Z^0 component in the electro-weak production process. The sensitivity to new physics would be dramatically improved w.r.t. to what expected from LHC for electroweak couplings.Comment: White paper for Snowmass CSS 201

    Determining the CP properties of the Higgs boson

    Get PDF
    The search and the probe of the fundamental properties of Higgs boson(s) and, in particular, the determination of their charge conjugation and parity (CP) quantum numbers, is one of the main tasks of future high-energy colliders. We demonstrate that the CP properties of a Standard Model-like Higgs particle can be unambiguously assessed by measuring just the total cross section and the top polarization in associated Higgs production with top quark pairs in e+e- collisions.Comment: 4 pages, revtex, uses axodraw (style file included in the submission

    MAGIC sensitivity to millisecond-duration optical pulses

    Full text link
    The MAGIC telescopes are a system of two Imaging Atmospheric Cherenkov Telescopes (IACTs) designed to observe very high energy (VHE) gamma rays above ~50 GeV. However, as IACTs are sensitive to Cherenkov light in the UV/blue and use photo-detectors with a time response well below the ms scale, MAGIC is also able to perform simultaneous optical observations. Through an alternative system installed in the central PMT of MAGIC II camera, the so-called central pixel, MAGIC is sensitive to short (1ms - 1s) optical pulses. Periodic signals from the Crab pulsar are regularly monitored. Here we report for the first time the experimental determination of the sensitivity of the central pixel to isolated 1-10 ms long optical pulses. The result of this study is relevant for searches of fast transients such as Fast Radio Bursts (FRBs).Comment: Proceedings of the 35th International Cosmic Ray Conference (ICRC 2017), Bexco, Busan, Korea (arXiv:1708.05153
    corecore