76,481 research outputs found
Evaluation of the volumetric erosion of spherical electrical contacts using the defect removal method
Volumetric erosion is regarded as a significant index for studying the erosion process of electrical switching contacts. Three-dimensional (3-D) surface measurement techniques provide an approach to investigate the geometric characteristics and volumetric erosion of electrical contacts. This paper presents a concrete data-processing procedure for evaluating volumetric erosion of spherical electrical contacts from 3-D surface measurement data using the defect removal method (DRM). The DRM outlined by McBride is an algorithm for evaluating the underlying form (prior to erosion) parameters of the surfaces with localized erosion and allowing the erosion characteristics themselves to be isolated. In this paper, a number of spherical electrical contacts that had undergone various electrical operations were measured using a 3-D surface profiler, the underlying form parameters of the eroded contacts were evaluated using the DRM, and then the volumetric erosions were isolated and calculated. The analysis of the correlations between the volumetric erosion and the number of switching cycles of electrical operation that the contacts had undergone showed a more accurate and reliable volumetric erosion evaluation using the DRM than that without using the DRM
Atwood ratio dependence of Richtmyer-Meshkov flows under reshock conditions using large-eddy simulations
We study the shock-driven turbulent mixing that occurs when a perturbed planar density interface is impacted by a planar shock wave of moderate strength and subsequently reshocked. The present work is a systematic study of the influence of the relative molecular weights of the gases in the form of the initial Atwood ratio A. We investigate the cases A = ± 0.21, ±0.67 and ±0.87 that correspond to the realistic gas combinations air–CO_2, air–SF_6 and H_2–air. A canonical, three-dimensional numerical experiment, using the large-eddy simulation technique with an explicit subgrid model, reproduces the interaction within a shock tube with an endwall where the incident shock Mach number is ~1.5 and the initial interface perturbation has a fixed dominant wavelength and a fixed amplitude-to-wavelength ratio ~0.1. For positive Atwood configurations, the reshock is followed by secondary waves in the form of alternate expansion and compression waves travelling between the endwall and the mixing zone. These reverberations are shown to intensify turbulent kinetic energy and dissipation across the mixing zone. In contrast, negative Atwood number configurations produce multiple secondary reshocks following the primary reshock, and their effect on the mixing region is less pronounced. As the magnitude of A is increased, the mixing zone tends to evolve less symmetrically. The mixing zone growth rate following the primary reshock approaches a linear evolution prior to the secondary wave interactions. When considering the full range of examined Atwood numbers, measurements of this growth rate do not agree well with predictions of existing analytic reshock models such as the model by Mikaelian (Physica D, vol. 36, 1989, p. 343). Accordingly, we propose an empirical formula and also a semi-analytical, impulsive model based on a diffuse-interface approach to describe the A-dependence of the post-reshock growth rate
Converging shocks in elastic-plastic solids
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e = e_(s)(I_1)+e_(h)(ρ,ς), where e_(s) accounts for shear through the first invariant of the Cauchy–Green tensor, and e_(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e_(h) = e_(h)(ρ), with a power-law dependence e_(h) ∝ ρ_(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M ∝ [log(1/R)]^α, independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M ∝ R^(−(s−1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the strong-shock limit M∝R^(−(s−1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ−1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed
Cryogenic flux-concentrator
Flux concentrator has high primary to secondary coupling efficiency enabling it to produce high magnetic fields. The device provides versatility in pulse duration, magnetic field strengths and power sources
Spheromak formation and sustainment studies at the sustained spheromak physics experiment using high-speed imaging and magnetic diagnostics
A high-speed imaging system with shutter speeds as fast as 2 ns and double frame capability has been used to directly image the formation and evolution of the sustained spheromak physics experiment (SSPX) [E. B. Hooper et al., Nucl. Fusion 39, 863 (1999)]. Reproducible plasma features have been identified with this diagnostic and divided into three groups, according to the stage in the discharge at which they occur: (i) breakdown and ejection, (ii) sustainment, and (iii) decay. During the first stage, plasma descends into the flux conserver shortly after breakdown and a transient plasma column is formed. The column then rapidly bends and simultaneously becomes too dim to photograph a few microseconds after formation. It is conjectured here that this rapid bending precedes the transfer of toroidal to poloidal flux. During sustainment, a stable plasma column different from the transient one is observed. It has been possible to measure the column diameter and compare it to CORSICA [A. Tarditi et al., Contrib. Plasma Phys. 36, 132 (1996)], a magnetohydrodynamic equilibrium reconstruction code which showed good agreement with the measurements. Elongation and velocity measurements were made of cathode patterns also seen during this stage, possibly caused by pressure gradients or E×B drifts. The patterns elongate in a toroidal-only direction which depends on the magnetic-field polarity. During the decay stage the column diameter expands as the current ramps down, until it eventually dissolves into filaments. With the use of magnetic probes inserted in the gun region, an X point which moved axially depending on current level and toroidal mode number was observed in all the stages of the SSPX plasma discharge
Low cost solar array project 1: Silicon material
The low cost production of silicon by deposition of silicon from a hydrogen/chlorosilane mixture is described. Reactor design, reaction vessel support systems (physical support, power control and heaters, and temperature monitoring systems) and operation of the system are reviewed. Testing of four silicon deposition reactors is described, and test data and consequently derived data are given. An 18% conversion of trichlorosilane to silicon was achieved, but average conversion rates were lower than predicted due to incomplete removal of byproduct gases for recycling and silicon oxide/silicon polymer plugging of the gas outlet. Increasing the number of baffles inside the reaction vessel improved the conversion rate. Plans for further design and process improvements to correct the problems encountered are outlined
Holomorphic Extension from Weakly Pseudoconcave CR Manifolds
Let M be a smooth locally embeddable CR manifold, having some CR dimension m
and some CR codimension d. We find an improved local geometric condition on M
which guarantees, at a point p on M, that germs of CR distributions are smooth
functions, and have extensions to germs of holomorphic functions on a full
ambient neighborhood of p. Our condition is a form of weak pseudoconcavity,
closely related to essential pseudoconcavity as introduced in [HN1].
Applications are made to CR meromorphic functions and mappings. Explicit
examples are given which satisfy our new condition,but which are not
pseudoconcave in the strong sense. These results demonstrate that for
codimension d > 1, there are additional phenomena which are invisible when d =
1
Preliminary Studies Leading Toward the Development of a LIDAR Bathymetry Mapping Instrument
The National Aeronautics and Space Administration (NASA) at Goddard Space Flight Center (GSFC) has developed a laser ranging device (LIDAR) which provides accurate and timely data of earth features. NASA/GSFC recently modified the sensor to include a scanning capability to produce LIDAR swaths. They have also integrated a Global Positioning System (GPS) and an Inertial Navigation System (INS) to accurately determine the absolute aircraft location and aircraft attitude (pitch, yaw, and roll), respectively. The sensor has been flown in research mode by NASA for many years. The LIDAR has been used in different configurations or modes to acquire such data as altimetry (topography), bathymetry (water depth), laser-induced fluorosensing (tracer dye movements, oil spills and oil thickness, chlorophyll and plant stress identification), forestry, and wetland discrimination studies. NASA and HARC are developing a commercial version of the instrument for topographic mapping applications. The next phase of the commercialization project will be to investigate other applications such as wetlands mapping and coastal bathymetry. In this paper we report on preliminary laboratory measurements to determine the feasibility of making accurate depth measurements in relatively shallow water (approximately 2 to 6 feet deep) using a LIDAR system. The LIDAR bathymetry measurements are relatively simple in theory. The water depth is determined by measuring the time interval between the water surface reflection and the bottom surface reflection signals. Depth is then calculated by dividing by the index of refraction of water. However, the measurements are somewhat complicated due to the convolution of the water surface return signal with the bottom surface return signal. Therefore in addition to the laboratory experiments, computer simulations of the data were made to show these convolution effects in the return pulse waveform due to: (1) water depth, and (2) changes in bottom surface reflectivity
Biotechnological applications of functional metagenomics in the food and pharmaceutical industries
peer-reviewedMicroorganisms are found throughout nature, thriving in a vast range of environmental conditions. The majority of them are unculturable or difficult to culture by traditional methods. Metagenomics enables the study of all microorganisms, regardless of whether they can be cultured or not, through the analysis of genomic data obtained directly from an environmental sample, providing knowledge of the species present, and allowing the extraction of information regarding the functionality of microbial communities in their natural habitat. Function-based screenings, following the cloning and expression of metagenomic DNA in a heterologous host, can be applied to the discovery of novel proteins of industrial interest encoded by the genes of previously inaccessible microorganisms. Functional metagenomics has considerable potential in the food and pharmaceutical industries, where it can, for instance, aid (i) the identification of enzymes with desirable technological properties, capable of catalyzing novel reactions or replacing existing chemically synthesized catalysts which may be difficult or expensive to produce, and able to work under a wide range of environmental conditions encountered in food and pharmaceutical processing cycles including extreme conditions of temperature, pH, osmolarity, etc; (ii) the discovery of novel bioactives including antimicrobials active against microorganisms of concern both in food and medical settings; (iii) the investigation of industrial and societal issues such as antibiotic resistance development. This review article summarizes the state-of-the-art functional metagenomic methods available and discusses the potential of functional metagenomic approaches to mine as yet unexplored environments to discover novel genes with biotechnological application in the food and pharmaceutical industries.Science Foundation Ireland(SFI)Grant Number 13/SIRG/215
- …