1,283 research outputs found

    Biodegradation of the Alkaline Cellulose Degradation Products Generated during Radioactive Waste Disposal.

    Get PDF
    The anoxic, alkaline hydrolysis of cellulosic materials generates a range of cellulose degradation products (CDP) including α and β forms of isosaccharinic acid (ISA) and is expected to occur in radioactive waste disposal sites receiving intermediate level radioactive wastes. The generation of ISA's is of particular relevance to the disposal of these wastes since they are able to form complexes with radioelements such as Pu enhancing their migration. This study demonstrates that microbial communities present in near-surface anoxic sediments are able to degrade CDP including both forms of ISA via iron reduction, sulphate reduction and methanogenesis, without any prior exposure to these substrates. No significant difference (n = 6, p = 0.118) in α and β ISA degradation rates were seen under either iron reducing, sulphate reducing or methanogenic conditions, giving an overall mean degradation rate of 4.7×10−2 hr−1 (SE±2.9×10−3). These results suggest that a radioactive waste disposal site is likely to be colonised by organisms able to degrade CDP and associated ISA's during the construction and operational phase of the facility

    Evolution of electron transfer out of the cell: comparative genomics of six Geobacter genomes

    Get PDF
    Background: Geobacter species grow by transferring electrons out of the cell - either to Fe(III)-oxides or to manmade substances like energy-harvesting electrodes. Study of Geobacter sulfurreducens has shown that TCA cycle enzymes, inner-membrane respiratory enzymes, and periplasmic and outer-membrane cytochromes are required. Here we present comparative analysis of six Geobacter genomes, including species from the clade that predominates in the subsurface. Conservation of proteins across the genomes was determined to better understand the evolution of Geobacter species and to create a metabolic model applicable to subsurface environments. Results: The results showed that enzymes for acetate transport and oxidation, and for proton transport across the inner membrane were well conserved. An NADH dehydrogenase, the ATP synthase, and several TCA cycle enzymes were among the best conserved in the genomes. However, most of the cytochromes required for Fe(III)-reduction were not, including many of the outer-membrane cytochromes. While conservation of cytochromes was poor, an abundance and diversity of cytochromes were found in every genome, with duplications apparent in several species. Conclusions: These results indicate there is a common pathway for acetate oxidation and energy generation across the family and in the last common ancestor. They also suggest that while cytochromes are important for extracellular electron transport, the path of electrons across the periplasm and outer membrane is variable. This combination of abundant cytochromes with weak sequence conservation suggests they may not be specific terminal reductases, but rather may be important in their heme-bearing capacity, as sinks for electrons between the inner-membrane electron transport chain and the extracellular acceptor

    Evolution from a respiratory ancestor to fill syntrophic and fermentative niches: comparative fenomics of six Geobacteraceae species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anaerobic degradation of organic matter in natural environments, and the biotechnical use of anaerobes in energy production and remediation of subsurface environments, both require the cooperative activity of a diversity of microorganisms in different metabolic niches. The <it>Geobacteraceae </it>family contains members with three important anaerobic metabolisms: fermentation, syntrophic degradation of fermentation intermediates, and anaerobic respiration.</p> <p>Results</p> <p>In order to learn more about the evolution of anaerobic microbial communities, the genome sequences of six <it>Geobacteraceae </it>species were analyzed. The results indicate that the last common <it>Geobacteraceae </it>ancestor contained sufficient genes for anaerobic respiration, completely oxidizing organic compounds with the reduction of external electron acceptors, features that are still retained in modern <it>Geobacter </it>and <it>Desulfuromonas </it>species. Evolution of specialization for fermentative growth arose twice, via distinct lateral gene transfer events, in <it>Pelobacter carbinolicus </it>and <it>Pelobacter propionicus</it>. Furthermore, <it>P. carbinolicus </it>gained hydrogenase genes and genes for ferredoxin reduction that appear to permit syntrophic growth via hydrogen production. The gain of new physiological capabilities in the <it>Pelobacter </it>species were accompanied by the loss of several key genes necessary for the complete oxidation of organic compounds and the genes for the <it>c</it>-type cytochromes required for extracellular electron transfer.</p> <p>Conclusion</p> <p>The results suggest that <it>Pelobacter </it>species evolved parallel strategies to enhance their ability to compete in environments in which electron acceptors for anaerobic respiration were limiting. More generally, these results demonstrate how relatively few gene changes can dramatically transform metabolic capabilities and expand the range of environments in which microorganisms can compete.</p

    Performance of pilot-scale microbial fuel cells treating wastewater with associated bioenergy production in the Caribbean context

    Get PDF
    Microbial fuel cell (MFC) technology represents a form of renewable energy that generates bioelectricity from what would otherwise be considered a waste stream. MFCs may be ideally suited to the small island developing state (SIDS) context, such as Trinidad and Tobago where seawater as the main electrolyte is readily available and economical renewable and sustainable electricity is also deemed a priority. Hence this project tested two identical laboratory-scaled MFC systems that were specifically designed and developed for the Caribbean regional context. They consisted of two separate chambers, an anaerobic anodic chamber inoculated with wastewater and an aerobic cathodic chamber separated by a proton exchange membrane. Domestic wastewater from two various wastewater treatment plants inflow (after screening) was placed into the anodic chamber, and seawater from the Atlantic Ocean and Gulf of Paria placed into the cathodic chambers respectively with the bacteria present in the wastewater attaching to the anode. Experimental results demonstrated that the bacterial degradation of the wastewaters as substrate induced an electron flow through the electrodes producing bioelectricity whilst simultaneously reducing the organic matter as biochemical oxygen demand and chemical oxygen demand by 30 to 75%. The average bioenergy output for both systems was 84 mW/m² and 96 mW/m² respectively. This study demonstrated the potential for simultaneous bioenergy production and wastewater treatment in the SIDS context

    Electroactive biofilms: new means for electrochemistry

    Get PDF
    This work demonstrates that electrochemical reactions can be catalysed by the natural biofilms that form on electrode surfaces dipping into drinking water or compost. In drinking water, oxygen reduction was monitored with stainless steel ultra-microelectrodes under constant potential electrolysis at )0.30 V/SCE for 13 days. 16 independent experiments were conducted in drinking water, either pure or with the addition of acetate or dextrose. In most cases, the current increased and reached 1.5–9.5 times the initial current. The current increase was attributed to biofilm forming on the electrode in a similar way to that has been observed in seawater. Epifluorescence microscopy showed that the bacteria size and the biofilm morphology depended on the nutrients added, but no quantitative correlation between biofilm morphology and current was established. In compost, the oxidation process was investigated using a titanium based electrode under constant polarisation in the range 0.10–0.70 V/SCE. It was demonstrated that the indigenous micro-organisms were responsible for the current increase observed after a few days, up to 60 mA m)2. Adding 10 mM acetate to the compost amplified the current density to 145 mA m)2 at 0.50 V/SCE. The study suggests that many natural environments, other than marine sediments, waste waters and seawaters that have been predominantly investigated until now, may be able to produce electrochemically active biofilm

    A revised scheme for the reactivity of iron (oxyhydr)oxide minerals towards dissolved sulfide

    Get PDF
    The reaction between dissolved sulfide and synthetic iron (oxyhydr)oxide minerals was studied in artificial seawater and 0.1 M NaCl at pH 7.5 and 25°C. Electron transfer between surface-complexed sulfide and solid phase Fe(III) results in the oxidation of dissolved sulfide to elemental sulfur, and the subsequent dissolution of the surface-reduced Fe. Sulfide oxidation and Fe(II) dissolution kinetics were evaluated for freshly precipitated hydrous ferric oxide (HFO), lepidocrocite, goethite, magnetite, hematite, and Al-substituted lepidocrocite. Reaction kinetics were expressed in terms of an empirical rate equation of the form: R-i = k(i)(H2S)(t=0)(0.5)A where Ri is the rate of Fe(II) dissolution (RFe) or the rate of sulfide oxidation (RS), ki is the appropriate rate constant (kFe or kS), (H2S)t=0 is the initial dissolved sulfide concentration, and A is the initial mineral surface area. The rate constants derived from the above equation suggest that the reactivity of Fe (oxyhydr)oxide minerals varies over two orders of magnitude, with increasing reactivity in the order, goethite < hematite < magnetite << lepidocrocite ≈ HFO. Competitive adsorption of major seawater solutes has little effect on reaction kinetics for the most reactive minerals, but results in rates which are reduced by 65-80% for goethite, magnetite, and hematite. This decrease in reaction rates likely arises from the blocking of surface sites for sulfide complexation by the adsorption of seawater solutes during the later, slower stages of adsorption (possibly attributable to diffusion into micropores or aggregates). The derivation of half lives for the sulfide-promoted reductive dissolution of Fe (oxyhydr)oxides in seawater, suggests that mineral reactivity can broadly be considered in terms of two mineral groups. Minerals with a lower degree of crystal order (hydrous ferric oxides and lepidocrocite) are reactive on a time-scale of minutes to hours. The more ordered minerals (goethite, magnetite, and hematite) are reactive on a time-scale of tens of days. Substitution of impurities within the mineral structure (as is likely in nature) has an effect on mineral reactivity. However, these effects are unlikely to have a significant impact on the relative reactivities of the two mineral groups

    De Novo Assembly of the Complete Genome of an Enhanced Electricity-Producing Variant of Geobacter sulfurreducens Using Only Short Reads

    Get PDF
    State-of-the-art DNA sequencing technologies are transforming the life sciences due to their ability to generate nucleotide sequence information with a speed and quantity that is unapproachable with traditional Sanger sequencing. Genome sequencing is a principal application of this technology, where the ultimate goal is the full and complete sequence of the organism of interest. Due to the nature of the raw data produced by these technologies, a full genomic sequence attained without the aid of Sanger sequencing has yet to be demonstrated

    In situ Biofilm Quantification in Bioelectrochemical Systems by using Optical Coherence Tomography

    Get PDF
    Detailed studies of microbial growth in bioelectrochemical systems (BESs) are required for their suitable design and operation. Here, we report the use of optical coherence tomography (OCT) as a tool for in situ and noninvasive quantification of biofilm growth on electrodes (bioanodes). An experimental platform is designed and described in which transparent electrodes are used to allow real‐time, 3D biofilm imaging. The accuracy and precision of the developed method is assessed by relating the OCT results to well‐established standards for biofilm quantification (chemical oxygen demand (COD) and total N content) and show high correspondence to these standards. Biofilm thickness observed by OCT ranged between 3 and 90 μm for experimental durations ranging from 1 to 24 days. This translated to growth yields between 38 and 42 mgurn:x-wiley:18645631:media:cssc201800589:cssc201800589-math-0001  gurn:x-wiley:18645631:media:cssc201800589:cssc201800589-math-0002 −1 at an anode potential of −0.35 V versus Ag/AgCl. Time‐lapse observations of an experimental run performed in duplicate show high reproducibility in obtained microbial growth yield by the developed method. As such, we identify OCT as a powerful tool for conducting in‐depth characterizations of microbial growth dynamics in BESs. Additionally, the presented platform allows concomitant application of this method with various optical and electrochemical techniques
    corecore