7,569 research outputs found
R-matrix Approach to Quantum Superalgebras su_{q}(m|n)
Quantum superalgebras are studied in the framework of
-matrix formalism. Explicit parametrization of and
matrices in terms of generators are presented. We also show
that quantum deformation of nonsimple superalgebra requires its
extension to .Comment: 14 page
Theory of elastic interaction between colloidal particles in the nematic cell in the presence of the external electric or magnetic field
The Green function method developed in Ref.[S. B. Chernyshuk and B. I. Lev,
Phys. Rev. E \textbf{81}, 041707 (2010)] is used to describe elastic
interactions between axially symmetric colloidal particles in the nematic cell
in the presence of the external electric or magnetic field. General formulas
for dipole-dipole, dipole-quadrupole and quadrupole-quadrupole interactions in
the homeotropic and planar nematic cells with parallel and perpendicular field
orientations are obtained. A set of new results has been predicted: 1)
\textit{Deconfinement effect} for dipole particles in the homeotropic nematic
cell with negative dielectric anisotropy and perpendicular
to the cell electric field, when electric field is approaching it's Frederiks
threshold value . This means cancellation of the
confinement effect found in Ref. [M.Vilfan et al. Phys.Rev.Lett. {\bf 101},
237801, (2008)] for dipole particles near the Frederiks transition while it
remains for quadrupole particles. 2) New effect of \textit{attraction and
stabilization} of the particles along the electric field parallel to the cell
planes in the homeotropic nematic cell with . The minimun
distance between two particles depends on the strength of the field and can be
ordinary for . 3) Attraction and repulsion zones for all elastic interactions
are changed dramatically under the action of the external field.Comment: 15 pages, 17 figure
Rapid roll Inflation with Conformal Coupling
Usual inflation is realized with a slow rolling scalar field minimally
coupled to gravity. In contrast, we consider dynamics of a scalar with a flat
effective potential, conformally coupled to gravity. Surprisingly, it contains
an attractor inflationary solution with the rapidly rolling inflaton field. We
discuss models with the conformal inflaton with a flat potential (including
hybrid inflation). There is no generation of cosmological fluctuations from the
conformally coupled inflaton. We consider realizations of modulated
(inhomogeneous reheating) or curvaton cosmological fluctuations in these
models. We also implement these unusual features for the popular
string-theoretic warped inflationary scenario, based on the interacting D3-anti
D3 branes. The original warped brane inflation suffers a large inflaton mass
due to conformal coupling to 4-dimensional gravity. Instead of considering this
as a problem and trying to cure it with extra engineering, we show that warped
inflation with the conformally coupled, rapidly rolling inflaton is yet
possible with N=37 efoldings, which requires low energy scales 1-100 TeV of
inflation. Coincidentally, the same warping numerology can be responsible for
the hierarchy. It is shown that the scalars associated with angular isometries
of the warped geometry of compact manifold (e.g. S^3 of KS geometry) have
solutions identical to conformally coupled modes and also cannot be responsible
for cosmological fluctuations. We discuss other possibilities.Comment: 15 pages, version accepted for publication in PR
- …