155 research outputs found

    Finding the association of mRNA and miRNA using Next Generation Sequencing data of Kidney renal cell carcinoma

    Get PDF
    MicroRNAs (miRNAs) are a class of 22-nucleotide endogenous noncod- ing RNAs, plays important role in regulating target gene expression via repress- ing translation or promoting messenger RNAs (mRNA) degradation. Numerous re- searchers have found that miRNAs have serious effects on cancer. Therefore, study of mRNAs and miRNAs together through the integrated analysis of mRNA and miRNA expression profiling could help us in getting a deeper insight into the can- cer research. In this regards, High-Throughput Sequencing data of Kidney renal cell carcinoma is used here. The proposed method focuses on identifying mRNA- miRNA pair that has a signature in kidney tumor sample. For this analysis, Ran- dom Forests, Particle Swarm Optimization and Support Vector Machine classifier is used to have best sets of mRNAs-miRNA pairs. Additionally, the significance of selected mRNA-miRNA pairs is tested using gene ontology and pathway analysis tools. Moreover, the selected mRNA-miRNA pairs are searched based on changes in expression values of the used mRNA and miRNA dataset

    Identification of lung cancer with high sensitivity and specificity by blood testing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lung cancer is a very frequent and lethal tumor with an identifiable risk population. Cytological analysis and chest X-ray failed to reduce mortality, and CT screenings are still controversially discussed. Recent studies provided first evidence for the potential usefulness of autoantigens as markers for lung cancer.</p> <p>Methods</p> <p>We used extended panels of arrayed antigens and determined autoantibody signatures of sera from patients with different kinds of lung cancer, different common non-tumor lung pathologies, and controls without any lung disease by a newly developed computer aided image analysis procedure. The resulting signatures were classified using linear kernel Support Vector Machines and 10-fold cross-validation.</p> <p>Results</p> <p>The novel approach allowed for discriminating lung cancer patients from controls without any lung disease with a specificity of 97.0%, a sensitivity of 97.9%, and an accuracy of 97.6%. The classification of stage IA/IB tumors and controls yielded a specificity of 97.6%, a sensitivity of 75.9%, and an accuracy of 92.9%. The discrimination of lung cancer patients from patients with non-tumor lung pathologies reached an accuracy of 88.5%.</p> <p>Conclusion</p> <p>We were able to separate lung cancer patients from subjects without any lung disease with high accuracy. Furthermore, lung cancer patients could be seprated from patients with other non-tumor lung diseases. These results provide clear evidence that blood-based tests open new avenues for the early diagnosis of lung cancer.</p

    Multiple Sclerosis: MicroRNA Expression Profiles Accurately Differentiate Patients with Relapsing-Remitting Disease from Healthy Controls

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system, which is heterogenous with respect to clinical manifestations and response to therapy. Identification of biomarkers appears desirable for an improved diagnosis of MS as well as for monitoring of disease activity and treatment response. MicroRNAs (miRNAs) are short non-coding RNAs, which have been shown to have the potential to serve as biomarkers for different human diseases, most notably cancer. Here, we analyzed the expression profiles of 866 human miRNAs. In detail, we investigated the miRNA expression in blood cells of 20 patients with relapsing-remitting MS (RRMS) and 19 healthy controls using a human miRNA microarray and the Geniom Real Time Analyzer (GRTA) platform. We identified 165 miRNAs that were significantly up- or downregulated in patients with RRMS as compared to healthy controls. The best single miRNA marker, hsa-miR-145, allowed discriminating MS from controls with a specificity of 89.5%, a sensitivity of 90.0%, and an accuracy of 89.7%. A set of 48 miRNAs that was evaluated by radial basis function kernel support vector machines and 10-fold cross validation yielded a specificity of 95%, a sensitivity of 97.6%, and an accuracy of 96.3%. While 43 of the 165 miRNAs deregulated in patients with MS have previously been related to other human diseases, the remaining 122 miRNAs are so far exclusively associated with MS. The implications of our study are twofold. The miRNA expression profiles in blood cells may serve as a biomarker for MS, and deregulation of miRNA expression may play a role in the pathogenesis of MS

    Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    miRNAs as Biomarkers and Therapeutic Targets in Non-Small Cell Lung Cancer: Current Perspectives

    Get PDF
    corecore