43 research outputs found

    Diagnosis of lung cancer in individuals with solitary pulmonary nodules by plasma microRNA biomarkers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Making a definitive preoperative diagnosis of solitary pulmonary nodules (SPNs) found by CT has been a clinical challenge. We previously demonstrated that microRNAs (miRNAs) could be used as biomarkers for lung cancer diagnosis. Here we investigate whether plasma microRNAs are useful in identifying lung cancer among individuals with CT-detected SPNs.</p> <p>Methods</p> <p>By using quantitative reverse transcriptase PCR analysis, we first determine plasma expressions of five miRNAs in a training set of 32 patients with malignant SPNs, 33 subjects with benign SPNs, and 29 healthy smokers to define a panel of miRNAs that has high diagnostic efficiency for lung cancer. We then validate the miRNA panel in a testing set of 76 patients with malignant SPNs and 80 patients with benign SPNs.</p> <p>Results</p> <p>In the training set, miR-21 and miR-210 display higher plasma expression levels, whereas miR-486-5p has lower expression level in patients with malignant SPNs, as compared to subjects with benign SPNs and healthy controls (all P ≤ 0.001). A logistic regression model with the best prediction was built on the basis of miR-21, miR-210, and miR-486-5p. The three miRNAs used in combination produced the area under receiver operating characteristic curve at 0.86 in distinguishing lung tumors from benign SPNs with 75.00% sensitivity and 84.95% specificity. Validation of the miRNA panel in the testing set confirms their diagnostic value that yields significant improvement over any single one.</p> <p>Conclusions</p> <p>The plasma miRNAs provide potential circulating biomarkers for noninvasively diagnosing lung cancer among individuals with SPNs, and could be further evaluated in clinical trials.</p

    Plasma microRNAs as potential biomarkers for non-small-cell lung cancer

    Get PDF
    Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death. Developing minimally invasive techniques that can diagnose NSCLC, particularly at an early stage, may improve its outcome. Using microarray platforms, we previously identified 12 microRNAs (miRNAs) the aberrant expressions of which in primary lung tumors are associated with early-stage NSCLC. Here, we extend our previous research by investigating whether the miRNAs could be used as potential plasma biomarkers for NSCLC. We initially validated expressions of the miRNAs in paired lung tumor tissues and plasma specimens from 28 stage I NSCLC patients by real-time quantitative reverse transcription PCR, and then evaluated diagnostic value of the plasma miRNAs in a cohort of 58 NSCLC patients and 29 healthy individuals. The altered miRNA expressions were reproducibly confirmed in the tumor tissues. The miRNAs were stably present and reliably measurable in plasma. Of the 12 miRNAs, five displayed significant concordance of the expression levels in plasma and the corresponding tumor tissues (all r>0.850, all P<0.05). A logistic regression model with the best prediction was defined on the basis of the four genes (miRNA-21, -126, -210, and 486-5p), yielding 86.22% sensitivity and 96.55% specificity in distinguishing NSCLC patients from the healthy controls. Furthermore, the panel of miRNAs produced 73.33% sensitivity and 96.55% specificity in identifying stage I NSCLC patients. In addition, the genes have higher sensitivity (91.67%) in diagnosis of lung adenocarcinomas compared with squamous cell carcinomas (82.35%) (P<0.05). Altered expressions of the miRNAs in plasma would provide potential blood-based biomarkers for NSCLC

    MicroRNA in lung cancer

    Get PDF
    MicroRNAs (miRNAs) are small non-protein-coding RNAs that function as endogenous negative gene regulators. Dysfunctions of miRNAs are frequently found in malignancies, including lung cancer. In this review, we summarise the current understanding of miRNAs in lung cancer tumourigenesis, and highlight their potential in overcoming drug resistance, abetting histological sub-classification techniques, and serving as biomarkers for lung cancer risk stratification and outcome prediction

    Micro-RNAs as diagnostic or prognostic markers in human epithelial malignancies

    Get PDF
    Micro-RNAs (miRs) are important regulators of mRNA and protein expression; the ability of miR expression profilings to distinguish different cancer types and classify their sub-types has been well-described. They also represent a novel biological entity with potential value as tumour biomarkers, which can improve diagnosis, prognosis, and monitoring of treatment response for human cancers. This endeavour has been greatly facilitated by the stability of miRs in formalin-fixed paraffin-embedded (FFPE) tissues, and their detection in circulation. This review will summarize some of the key dysregulated miRs described to date in human epithelial malignancies, and their potential value as molecular bio-markers in FFPE tissues and blood samples. There remain many challenges in this domain, however, with the evolution of different platforms, the complexities of normalizing miR profiling data, and the importance of evaluating sufficiently-powered training and validation cohorts. Nonetheless, well-conducted miR profiling studies should contribute important insights into the molecular aberrations driving human cancer development and progression

    Differential diagnosis of mesothelioma using a microRNA assay

    No full text
    corecore