537 research outputs found

    Search for cool giant exoplanets around young and nearby stars - VLT/NaCo near-infrared phase-coronagraphic and differential imaging

    Full text link
    [Abridged] Context. Spectral differential imaging (SDI) is part of the observing strategy of current and future high-contrast imaging instruments. It aims to reduce the stellar speckles that prevent the detection of cool planets by using in/out methane-band images. It attenuates the signature of off-axis companions to the star, such as angular differential imaging (ADI). However, this attenuation depends on the spectral properties of the low-mass companions we are searching for. The implications of this particularity on estimating the detection limits have been poorly explored so far. Aims. We perform an imaging survey to search for cool (Teff<1000-1300 K) giant planets at separations as close as 5-10 AU. We also aim to assess the sensitivity limits in SDI data taking the photometric bias into account. This will lead to a better view of the SDI performance. Methods. We observed a selected sample of 16 stars (age < 200 Myr, d < 25 pc) with the phase-mask coronagraph, SDI, and ADI modes of VLT/NaCo. Results. We do not detect any companions. As for the sensitivity limits, we argue that the SDI residual noise cannot be converted into mass limits because it represents a differential flux, unlike the case of single-band images. This results in degeneracies for the mass limits, which may be removed with the use of single-band constraints. We instead employ a method of directly determining the mass limits. The survey is sensitive to cool giant planets beyond 10 AU for 65% and 30 AU for 100% of the sample. Conclusions. For close-in separations, the optimal regime for SDI corresponds to SDI flux ratios >2. According to the BT-Settl model, this translates into Teff<800 K. The methods described here can be applied to the data interpretation of SPHERE. We expect better performance with the dual-band imager IRDIS, thanks to more suitable filter characteristics and better image quality.Comment: 19 pages, 16 figures, accepted for publication in A&A, version including language editin

    What is the Total Deuterium Abundance in the Local Galactic Disk?

    Get PDF
    Analyses of spectra obtained with the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite, together with spectra from the Copernicus and IMAPS instruments, reveal an unexplained very wide range in the observed deuterium/hydrogen (D/H) ratios for interstellar gas in the Galactic disk beyond the Local Bubble. We argue that spatial variations in the depletion of deuterium onto dust grains can explain these local variations in the observed gas-phase D/H ratios. We present a variable deuterium depletion model that naturally explains the constant measured values of D/H inside the Local Bubble, the wide range of gas-phase D/H ratios observed in the intermediate regime (log N(H I} = 19.2-20.7), and the low gas-phase D/H ratios observed at larger hydrogen column densities. We consider empirical tests of the deuterium depletion hypothesis: (i) correlations of gas-phase D/H ratios with depletions of the refractory metals iron and silicon, and (ii) correlation with the molecular hydrogen rotational temperature. Both of these tests are consistent with deuterium depletion from the gas phase in cold, not recently shocked, regions of the ISM, and high gas-phase D/H ratios in gas that has been shocked or otherwise heated recently. We argue that the most representative value for the total (gas plus dust) D/H ratio within 1 kpc of the Sun is >=23.1 +/- 2.4 (1 sigma) parts per million (ppm). This ratio constrains Galactic chemical evolution models to have a very small deuterium astration factor, the ratio of primordial to total (D/H) ratio in the local region of the Galactic disk, which we estimate to be f_d <= 1.19 +/-0.16 (1 sigma) or <= 1.12 +/- 0.14 (1 sigma) depending on the adopted light element nuclear reaction rates.Comment: 19 pages, 9 figure

    LOOC UP: Locating and observing optical counterparts to gravitational wave bursts

    Full text link
    Gravitational wave (GW) bursts (short duration signals) are expected to be associated with highly energetic astrophysical processes. With such high energies present, it is likely these astrophysical events will have signatures in the EM spectrum as well as in gravitational radiation. We have initiated a program, "Locating and Observing Optical Counterparts to Unmodeled Pulses in Gravitational Waves" (LOOC UP) to promptly search for counterparts to GW burst candidates. The proposed method analyzes near real-time data from the LIGO-Virgo network, and then uses a telescope network to seek optical-transient counterparts to candidate GW signals. We carried out a pilot study using S5/VSR1 data from the LIGO-Virgo network to develop methods and software tools for such a search. We will present the method, with an emphasis on the potential for such a search to be carried out during the next science run of LIGO and Virgo, expected to begin in 2009.Comment: 11 pages, 2 figures; v2) added acknowledgments, additional references, and minor text changes v3) added 1 figure, additional references, and minor text changes. v4) Updated references and acknowledgments. To be published in the GWDAW 12 Conf. Proc. by Classical and Quantum Gravit

    Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data

    Get PDF
    We place direct upper limits on the amplitude of gravitational waves from 28 isolated radio pulsars by a coherent multidetector analysis of the data collected during the second science run of the LIGO interferometric detectors. These are the first direct upper limits for 26 of the 28 pulsars. We use coordinated radio observations for the first time to build radio-guided phase templates for the expected gravitational-wave signals. The unprecedented sensitivity of the detectors allows us to set strain upper limits as low as a few times 10^(-24). These strain limits translate into limits on the equatorial ellipticities of the pulsars, which are smaller than 10^(-5) for the four closest pulsars

    Spurious Shear in Weak Lensing with LSST

    Full text link
    The complete 10-year survey from the Large Synoptic Survey Telescope (LSST) will image \sim 20,000 square degrees of sky in six filter bands every few nights, bringing the final survey depth to r27.5r\sim27.5, with over 4 billion well measured galaxies. To take full advantage of this unprecedented statistical power, the systematic errors associated with weak lensing measurements need to be controlled to a level similar to the statistical errors. This work is the first attempt to quantitatively estimate the absolute level and statistical properties of the systematic errors on weak lensing shear measurements due to the most important physical effects in the LSST system via high fidelity ray-tracing simulations. We identify and isolate the different sources of algorithm-independent, \textit{additive} systematic errors on shear measurements for LSST and predict their impact on the final cosmic shear measurements using conventional weak lensing analysis techniques. We find that the main source of the errors comes from an inability to adequately characterise the atmospheric point spread function (PSF) due to its high frequency spatial variation on angular scales smaller than 10\sim10' in the single short exposures, which propagates into a spurious shear correlation function at the 10410^{-4}--10310^{-3} level on these scales. With the large multi-epoch dataset that will be acquired by LSST, the stochastic errors average out, bringing the final spurious shear correlation function to a level very close to the statistical errors. Our results imply that the cosmological constraints from LSST will not be severely limited by these algorithm-independent, additive systematic effects.Comment: 22 pages, 12 figures, accepted by MNRA

    Brillouin Optical Time-Domain Analysis of Fiber-Optic Parametric Amplifiers

    Full text link

    Long-range and high-resolution distributed Brillouin fiber sensors | Capteur Brillouin réparti à fibre optique à haute résolution et longue portée

    Get PDF
    Brillouin-based distributed optical fiber sensors have been the subject of intense research in recent years because they offer a unique solution for continuous, real-time monitoring in civil engineering and petroleum industry. These sensors provide strain or temperature measurements with meter spatial resolution over several tens of kilometers. In this work we demonstrate two new Brillouin fiber sensors with enhanced performances based on advanced modulation formats from high-speed lightwave communications systems. We first report a Brillouin distributed sensor with enhanced centimeter resolution using a digital phase-shift keying technique. The second one uses a quadrature phase-shift keying modulator as a single-sideband modulator to balance the pump depletion and the fiber loss by the Brillouin gain. Combined with a specially-designed in-line bidirectional Erbium-doped fiber amplifier, we demonstrate that this technique allows for the achievement of long-range distributed sensing over 100 km

    First upper limits from LIGO on gravitational wave bursts

    Get PDF
    We report on a search for gravitational wave bursts using data from the first science run of the LIGO detectors. Our search focuses on bursts with durations ranging from 4 ms to 100 ms, and with significant power in the LIGO sensitivity band of 150 to 3000 Hz. We bound the rate for such detected bursts at less than 1.6 events per day at 90% confidence level. This result is interpreted in terms of the detection efficiency for ad hoc waveforms (Gaussians and sine-Gaussians) as a function of their root-sum-square strain h_{rss}; typical sensitivities lie in the range h_{rss} ~ 10^{-19} - 10^{-17} strain/rtHz, depending on waveform. We discuss improvements in the search method that will be applied to future science data from LIGO and other gravitational wave detectors.Comment: 21 pages, 15 figures, accepted by Phys Rev D. Fixed a few small typos and updated a few reference

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a "blind injection challenge". With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.Comment: Submitted for publication 2012 May 25, accepted 2012 October 25, published 2012 November 21, in ApJS, 203, 28 ( http://stacks.iop.org/0067-0049/203/28 ); 14 pages, 3 figures, 6 tables; LIGO-P1100038; Science summary at http://www.ligo.org/science/Publication-S6LVSwift/index.php ; Public access area to figures, tables at https://dcc.ligo.org/cgi-bin/DocDB/ShowDocument?docid=p110003
    corecore