127 research outputs found

    Phase Transitions of Soft Disks in External Periodic Potentials: A Monte Carlo Study

    Full text link
    The nature of freezing and melting transitions for a system of model colloids interacting by a DLVO potential in a spatially periodic external potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analyses of various thermodynamic quantities like the order parameter, its cumulants etc. are used to map the phase diagram of the system for various values of the reduced screening length κas\kappa a_{s} and the amplitude of the external potential. We find clear indication of a reentrant liquid phase over a significant region of the parameter space. Our simulations therefore show that the system of soft disks behaves in a fashion similar to charge stabilized colloids which are known to undergo an initial freezing, followed by a re-melting transition as the amplitude of the imposed, modulating field produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features consistent with a recent dislocation unbinding theory of laser induced melting

    Defect-unbinding transitions and inherent structures in two dimensions

    Full text link
    We present a large-scale (36000-particle) computational study of the "inherent structures" (IS) associated with equilibrium, two-dimensional, one-component Lennard-Jones systems. Our results provide strong support both for the inherent-structures theory of classical fluids, and for the KTHNY theory of two-stage melting in two dimensions. This support comes from the observation of three qualitatively distinct "phases" of inherent structures: a crystal, a "hexatic glass", and a "liquid glass". We also directly observe, in the IS, analogs of the two defect-unbinding transitions (respectively, of dislocations, and disclinations) believed to mediate the two equilibrium phase transitions. Each transition shows up in the inherent structures---although the free disclinations in the "liquid glass" are embedded in a percolating network of grain boundaries. The bond-orientational correlation functions of the inherent structures show the same progressive loss of order as do the three equilibrium phases: long-range to quasi-long-range to short-range.Comment: RevTeX, 8 pages, 15 figure

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    Intermittency in Dynamics of Two-Dimensional Vortex-like Defects

    Full text link
    We examine high-order dynamical correlations of defects (vortices, disclinations etc) in thin films starting from the Langevin equation for the defect motion. We demonstrate that dynamical correlation functions F2nF_{2n} of vorticity and disclinicity behave as F2ny2/r4nF_{2n}\sim y^2/r^{4n} where rr is the characteristic scale and yy is the fugacity. As a consequence, below the Berezinskii-Kosterlitz-Thouless transition temperature F2nF_{2n} are characterized by anomalous scaling exponents. The behavior strongly differs from the normal law F2nF2nF_{2n}\sim F_2^n occurring for simultaneous correlation functions, the non-simultaneous correlation functions appear to be much larger. The phenomenon resembles intermittency in turbulence.Comment: 30 pages, 11 figure

    Crystallization of a classical two-dimensional electron system: Positional and orientational orders

    Full text link
    Crystallization of a classical two-dimensional one-component plasma (electrons interacting with the Coulomb repulsion in a uniform neutralizing positive background) is investigated with a molecular dynamics simulation. The positional and the orientational correlation functions are calculated for the first time. We have found an indication that the solid phase has a quasi-long-range (power-law) positional order along with a long-range orientational order. This indicates that, although the long-range Coulomb interaction is outside the scope of Mermin's theorem, the absence of ordinary crystalline order at finite temperatures applies to the electron system as well. The `hexatic' phase, which is predicted between the liquid and the solid phases by the Kosterlitz-Thouless-Halperin-Nelson-Young theory, is also discussed.Comment: 3 pages, 4 figures; Corrected typos; Double columne

    Van der Waals loops and the melting transition in two dimensions

    Full text link
    Evidence for the existence of van der Waals loops in pressure p versus volume v plots has for some time supported the belief that melting in two dimensions is a first order phase transition. We report rather accurate equilibrium p(v) curves for systems of hard disks obtained from long Monte Carlo simulations. These curves, obtained in the constant volume ensemble, using periodic boundary conditions, exhibit well defined van der Waals loops. We illustrate their existence for finite systems that are known to undergo a continuous transition in the thermodynamic limit. To this end, we obtain magnetization m versus applied field curves from Monte Carlo simulations of the 2D Ising model, in the constant m ensemble, at the critical point. Whether van der Waals loops for disk systems behave in the thermodynamic limit as they do for the 2D Ising model at the critical point cannot be ruled out. Thus, the often made claim that melting in 2D is a first order phase transition, based on the evidence that van der Waals loops exist, is not sound.Comment: 10 pages, 6 Postscript figures (submitted to Phys.Rev.E). For related work, see http://pipe.unizar.es/~jf

    Phase Transitions Driven by Vortices in 2D Superfluids and Superconductors: From Kosterlitz-Thouless to 1st Order

    Full text link
    The Landau-Ginzburg-Wilson hamiltonian is studied for different values of the parameter λ\lambda which multiplies the quartic term (it turns out that this is equivalent to consider different values of the coherence length ξ\xi in units of the lattice spacing aa). It is observed that amplitude fluctuations can change dramatically the nature of the phase transition: for small values of λ\lambda (ξ/a>0.7\xi/a > 0.7), instead of the smooth Kosterlitz-Thouless transition there is a {\em first order} transition with a discontinuous jump in the vortex density vv and a larger non-universal drop in the helicity modulus. In particular, for λ\lambda sufficiently small (ξ/a1\xi/a \cong 1), the density of bound pairs of vortex-antivortex below TcT_c is so low that, vv drops to zero almost for all temperature T<TcT<Tc.Comment: 8 pages, 5 .eps figure

    A Natural Experiment on Innovation Without Patents

    Get PDF
    Innovation occurs within a complex web of law. Of the myriad legal doctrines that affect innovation, the most directly relevant is intellectual property, particularly patent law. The United States Constitution, in Article I, Section 8, states a strong public policy goal for the granting of patents (and copyrights) to inventors: “To promote the Progress of Science and useful Arts, by securing for limited Times to Authors and Inventors the exclusive Right to their respective Writings and Discoveries.” Despite the Founding Fathers’ apparent faith in the societal benefits afforded by patent protection, a crescendo of recent critics have accused the patent system of complicating, slowing, or even thwarting innovation. Patents certainly present significant hurdles for open and user innovation. Moreover, von Hippel (2005) and Strandburg (2008) have demonstrated that user innovators, especially individuals, tend to be poorly served, and often harmed, by the patent system

    Topological Defects, Orientational Order, and Depinning of the Electron Solid in a Random Potential

    Full text link
    We report on the results of molecular dynamics simulation (MD) studies of the classical two-dimensional electron crystal in the presence disorder. Our study is motivated by recent experiments on this system in modulation doped semiconductor systems in very strong magnetic fields, where the magnetic length is much smaller than the average interelectron spacing a0a_0, as well as by recent studies of electrons on the surface of helium. We investigate the low temperature state of this system using a simulated annealing method. We find that the low temperature state of the system always has isolated dislocations, even at the weakest disorder levels investigated. We also find evidence for a transition from a hexatic glass to an isotropic glass as the disorder is increased. The former is characterized by quasi-long range orientational order, and the absence of disclination defects in the low temperature state, and the latter by short range orientational order and the presence of these defects. The threshold electric field is also studied as a function of the disorder strength, and is shown to have a characteristic signature of the transition. Finally, the qualitative behavior of the electron flow in the depinned state is shown to change continuously from an elastic flow to a channel-like, plastic flow as the disorder strength is increased.Comment: 31 pages, RevTex 3.0, 15 figures upon request, accepted for publication in Phys. Rev. B., HAF94MD

    Monte Carlo simulation of a two-dimensional continuum Coulomb gas

    Full text link
    We study the classical two-dimensional Coulomb gas model for thermal vortex fluctuations in thin superconducting/superfluid films by Monte Carlo simulation of a grand canonical vortex ensemble defined on a continuum. The Kosterlitz-Thouless transition is well understood at low vortex density, but at high vortex density the nature of the phase diagram and of the vortex phase transition is less clear. From our Monte Carlo data we construct phase diagrams for the 2D Coulomb gas without any restrictions on the vortex density. For negative vortex chemical potential (positive vortex core energy) we always find a Kosterlitz-Thouless transition. Only if the Coulomb interaction is supplemented with a short-distance repulsion, a first order transition line is found, above some positive value of the vortex chemical potential.Comment: 10 pages RevTeX, 7 postscript figures included using eps
    corecore