1,695 research outputs found

    Near Infrared Observations of IRAS 09104+4109

    Get PDF
    Near infrared imaging and grism spectroscopy of the high luminosity infrared bright galaxy IRAS 09104+4109 have been obtained with the W. M. Keck Telescope. The imaging shows 6 “knots” of emission projected against the extended stellar envelope of the cD galaxy thought to be the source of the large far infrared luminosity. The luminosities of the knots are consistent with the bulges of galaxies accreting onto the central galaxy. In addition, there are 11 companion galaxies seen at radii of 40-150 kpc from the cD nucleus. These objects have colors in the range R—K~ 3.5±0.5 mag, J-H~0.9±0.2 mag H-K ~0.7±0.2 mag, which are consistent with galaxies at a redshift of 0.4. The companion galaxies have luminosities comparable to or less than the characteristic luminosity (L^*) of field galaxies. While the central cD galaxy is identified with the luminous infrared source, it appears to be a quiescent, radio-quiet galaxy, showing no evidence from its near infrared colors for a highly reddened nucleus as seen in other infrared luminous galaxies. The grism spectroscopy shows forbidden lines of low ionization stages of sulfer, iron, and oxygen, as well as hydrogen recombination lines and a strong line of neutral helium. A visual extinction of Av—2 mag is derived to the narrow line region surrounding the galaxy nucleus, based on the line ratios [S II]1.03 ”m/0.407 ”m and PÎŽ/HÎČ. The near infrared spectrum is consistent with the optical classification of this system being a Seyfert 2 nucleus

    HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies

    Get PDF
    We present colours of sources detected with the Herschel/SPIRE instrument in deep extragalactic surveys of the Lockman Hole, Spitzer-FLS, and GOODS-N fields in three photometric bands at 250, 350 and 500 ÎŒm. We compare these with expectations from the literature and discuss associated uncertainties and biases in the SPIRE data. We identify a 500 ÎŒm flux limited selection of sources from the HerMES point source catalogue that appears free from neighbouring/blended sources in all three SPIRE bands. We compare the colours with redshift tracks of various contemporary models. Based on these spectral templates we show that regions corresponding to specific population types and redshifts can be identified better in colour-flux space. The redshift tracks as well as the colour-flux plots imply a majority of detected objects with redshifts at 1 < z < 3.5, somewhat depending on the group of model SEDs used. We also find that a population of sources with S_(250)/S_(350) < 0.8 at fluxes above 50 mJy as observed by SPIRE are not well represented by contemporary models and could consist of a mix of cold and lensed galaxies

    HerMES: deep number counts at 250 ÎŒm, 350 ÎŒm and 500 ÎŒm in the COSMOS and GOODS-N fields and the build-up of the cosmic infrared background

    Get PDF
    Aims. The Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel space telescope has provided confusion limited maps of deep fields at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, as part of the Herschel Multi-tiered Extragalactic Survey (HerMES). Unfortunately, due to confusion, only a small fraction of the cosmic infrared background (CIB) can be resolved into individually-detected sources. Our goal is to produce deep galaxy number counts and redshift distributions below the confusion limit at SPIRE wavelengths (~20 mJy), which we then use to place strong constraints on the origins of the cosmic infrared background and on models of galaxy evolution. Methods. We individually extracted the bright SPIRE sources (>20 mJy) in the COSMOS field with a method using the positions, the flux densities, and the redshifts of the 24 ÎŒm sources as a prior, and derived the number counts and redshift distributions of the bright SPIRE sources. For fainter SPIRE sources (<20 mJy), we reconstructed the number counts and the redshift distribution below the confusion limit using the deep 24 ÎŒm catalogs associated with photometric redshift and information provided by the stacking of these sources into the deep SPIRE maps of the GOODS-N and COSMOS fields. Finally, by integrating all these counts, we studied the contribution of the galaxies to the CIB as a function of their flux density and redshift. Results. Through stacking, we managed to reconstruct the source counts per redshift slice down to ~2 mJy in the three SPIRE bands, which lies about a factor 10 below the 5σ confusion limit. Our measurements place tight constraints on source population models. None of the pre-existing models are able to reproduce our results at better than 3-σ. Finally, we extrapolate our counts to zero flux density in order to derive an estimate of the total contribution of galaxies to the CIB, finding 10.1_(-2.3)^(+2.6) nW m^(-2) sr^(-1), 6.5_(-1.6)^(+1.7) nW m^(-2) sr^(-1), and 2.8_(-0.8)^(+0.9) nW m^(-2) sr^(-1) at 250 ÎŒm, 350 ÎŒm, and 500 ÎŒm, respectively. These values agree well with FIRAS absolute measurements, suggesting our number counts and their extrapolation are sufficient to explain the CIB. We find that half of the CIB is emitted at z = 1.04, 1.20, and 1.25, respectively. Finally, combining our results with other works, we estimate the energy budget contained in the CIB between 8 ÎŒm and 1000 ÎŒm: 26_(-3)^(+7) nW m^(-2) sr^(-1)

    Submillimetre galaxies reside in dark matter haloes with masses greater than 3 × 10^(11) solar masses

    Get PDF
    The extragalactic background light at far-infrared wavelengths comes from optically faint, dusty, star-forming galaxies in the Universe with star formation rates of a few hundred solar masses per year. These faint, submillimetre galaxies are challenging to study individually because of the relatively poor spatial resolution of far-infrared telescopes. Instead, their average properties can be studied using statistics such as the angular power spectrum of the background intensity variations. A previous attempt at measuring this power spectrum resulted in the suggestion that the clustering amplitude is below the level computed with a simple ansatz based on a halo model. Here we report excess clustering over the linear prediction at arcminute angular scales in the power spectrum of brightness fluctuations at 250, 350 and 500 ”m. From this excess, we find that submillimetre galaxies are located in darkmatter haloes with a minimum mass, M_(min), such that log_(10)[M_(min)/M_⊙] = 11.5^(+0.7)_(-0.2) at 350 ”m, where M_⊙ is the solar mass. This minimum dark matter halo mass corresponds to the most efficient mass scale for star formation in the Universe, and is lower than that predicted by semi-analytical models for galaxy formation

    The Herschel-SPIRE instrument and its in-flight performance

    Get PDF
    The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 ÎŒm, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194–671 ÎŒm (447–1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4®× 8ÂŽ, observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6ÂŽ. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5–2
    • 

    corecore