70 research outputs found
Significant enhancement of irreversibility field in clean-limit bulk MgB2
Low resistivity ("clean") MgB2 bulk samples annealed in Mg vapor show an
increase in upper critical field Hc2(T) and irreversibility field Hirr(T) by a
factor of 2 in both transport and magnetic measurements. The best sample
displayed Hirr above 14 T at 4.2 K and 6 T at 20 K. These changes were
accompanied by an increase of the 40 K resistivity from 1.0 to 18 microohm-cm
and a lowering of the resistivity ratio from 15 to 3, while the critical
temperature Tc decreased by only 1-2 K. These results point the way to make
prepare MgB2 attractive for magnet applications.Comment: 3 pages, 4 figures, submitted to Applied Physics Letter
Effect of two gaps on the flux lattice internal field distribution: evidence of two length scales from muSR in Mg1-xAlxB2
We have measured the transverse field muon spin precession in the flux
lattice (FL) state of the two gap superconductor MgB2 and of the electron doped
compounds Mg1-xAlxB2 in magnetic fields up to 2.8T. We show the effect of the
two gaps on the internal field distribution in the FL, from which we determine
two coherence length parameters and the doping dependence of the London
penetration depth. This is an independent determination of the complex vortex
structure already suggested by the STM observation of large vortices in a MgB2
single crystal. Our data agrees quantitatively with STM and we thus validate a
new phenomenological model for the internal fields.Comment: now in press Phys. Rev. Lett., small modifications required by the
edito
Transport and superconducting properties of Fe-based superconductors: SmFeAs(O1-x Fx) versus Fe1+y (Te1-x, Sex)
We present transport and superconducting properties - namely resistivity,
magnetoresistivity, Hall effect, Seebeck effect, thermal conductivity, upper
critical field - of two different families of Fe-based superconductors, which
can be viewed in many respects as end members: SmFeAs(O1-xFx) with the largest
Tc and the largest anisotropy and Fe1+y(Te1-x,Sex), with the largest Hc2, the
lowest Tc and the lowest anisotropy. In the case of the SmFeAs(O1-xFx) series,
we find that a single band description allows to extract an approximated
estimation of band parameters such as carrier density and mobility from
experimental data, although the behaviour of Seebeck effect as a function of
doping demonstrates that a multiband description would be more appropriate. On
the contrary, experimental data of the Fe1+y(Te1-x,Sex) series exhibit a
strongly compensated behaviour, which can be described only within a multiband
model. In the Fe1+y(Te1-x,Sex) series, the role of the excess Fe, tuned by Se
stoichiometry, is found to be twofold: it dopes electrons in the system and it
introduces localized magnetic moments, responsible for Kondo like scattering
and likely pair-breaking of Cooper pairs. Hence, excess Fe plays a crucial role
also in determining superconducting properties such as the Tc and the upper
critical field Bc2. The huge Bc2 values of the Fe1+y(Te1-x,Sex) samples are
described by a dirty limit law, opposed to the clean limit behaviour of the
SmFeAs(O1-xFx) samples. Hence, magnetic scattering by excess Fe seems to drive
the system in the dirty regime, but its detrimental pairbreaking role seems not
to be as severe as predicted by theory. This issue has yet to be clarified,
addressing the more fundamental issue of the interplay between magnetism and
superconductivity
Evidence for electromagnetic granularity in polycrystalline Sm1111 iron-pnictides with enhanced phase purity
We prepared polycrystalline SmFeAsO1-xFx (Sm1111) bulk samples by sintering
and hot isostatic pressing (HIP) in order to study the effects of phase purity
and relative density on the intergranular current density. Sintered and HIPped
Sm1111 samples are denser with fewer impurity phases, such as SmOF and the
grain boundary wetting phase, FeAs. We found quite complex magnetization
behavior due to variations of both the inter and intragranular current
densities. Removing porosity and reducing second phase content enhanced the
intergranular current density, but HIPping reduced Tc and the intragranular
current density, due to loss of fluorine and reduction of Tc. We believe that
the HIPped samples are amongst the purest polycrystalline 1111 samples yet
made. However, their intergranular current densities are still small, providing
further evidence that polycrystalline pnictides, like polycrystalline cuprates,
are intrinsically granular.Comment: 14 pages, 6 figure
Growth of c-oriented MgB2 thin films by Pulsed Laser Deposition: structural characterization and electronic anisotropy
MgB2 thin films were deposited using Pulsed Laser Deposition (PLD) and
ex-situ annealing in Mg atmosphere. The films presented critical temperatures
up to 36K and turned out to be preferentially c-oriented both on Al2O3 (r-cut)
and MgO(100) substrates. Synchrotron analyses gave also some indications of in
plane texturing. The films exhibit very fine grain size (1200angstromin the
basal plane and 100angstrom along c-axis) but the general resistivity behavior
and the remarkable extension of the irreversible region confirm that the grains
boundaries are not barriers for supercurrents. Upper critical field
measurements with the magnetic field perpendicular and parallel with respect to
the film surface evidenced a field anisotropy ratio of 1.8. The Hc2 values are
considerably higher with respect to the bulk ones, namely when the field lies
in the basal plane, and the field-temperature phase diagram for the two
magnetic field orientations suggest the possibility of strongly enhancing the
pinning region by means of texturing.Comment: 20 pages, 6 figure
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
Feshbach resonances and mesoscopic phase separation near a quantum critical point in multiband FeAs-based superconductors
High Tc superconductivity in FeAs-based multilayers (pnictides), evading
temperature decoherence effects in a quantum condensate, is assigned to a
Feshbach resonance (called also shape resonance) in the exchange-like interband
pairing. The resonance is switched on by tuning the chemical potential at an
electronic topological transition (ETT) near a band edge, where the Fermi
surface topology of one of the subbands changes from 1D to 2D topology. We show
that the tuning is realized by changing i) the misfit strain between the
superconducting planes and the spacers ii) the charge density and iii) the
disorder. The system is at the verge of a catastrophe i.e. near a structural
and magnetic phase transition associated with the stripes (analogous to the 1/8
stripe phase in cuprates) order to disorder phase transition. Fine tuning of
both the chemical potential and the disorder pushes the critical temperature Ts
of this phase transition to zero giving a quantum critical point. Here the
quantum lattice and magnetic fluctuations promote the Feshbach resonance of the
exchange-like anisotropic pairing. This superconducting phase that resists to
the attacks of temperature is shown to be controlled by the interplay of the
hopping energy between stripes and the quantum fluctuations. The
superconducting gaps in the multiple Fermi surface spots reported by the recent
ARPES experiment of D. V. Evtushinsky et al. arXiv:0809.4455 are shown to
support the Feshbach scenario.Comment: 31 pages, 7 figure
- …